案例展示

铸造产品品质

×

感谢您的支持,我会继续努力的!

扫码支持
首页 > 案例展示

江苏某车企采用热失控二合一监测传感器保障车辆安全运行

来源:德克西尔 时间:2024-09-10 12:18:56

        一、案例背景

        在当前电动汽车市场快速发展的背景下,电池安全问题成为消费者关注的焦点。江苏某车企积极响应市场需求,致力于为消费者提供更加安全可靠的乘用车产品。为了有效监测乘用车电池热失控现象,该车企采用了德克西尔的热失控二合一监测传感器,为车辆安全运行提供了有力保障。

        二、热失控二合一监测传感器的优势

        1.高精度监测:该传感器能够实时、准确地监测电池的温度和电压变化,及时发现热失控的早期迹象。

        2.快速响应:一旦检测到热失控风险,传感器能够迅速发出警报,为车辆控制系统提供及时的反馈,以便采取相应的措施。

        3.可靠性高:经过严格的测试和验证,该传感器具有较高的可靠性和稳定性,能够在各种复杂的工作环境下正常运行。

        4.二合一功能:将氢气和二氧化碳浓度监测功能集成于一体,减少了传感器的数量和安装空间,提高了系统的集成度和可靠性。

        三、案例实施过程

        1.需求分析:江苏某车企对市场上的电池热失控监测技术进行了广泛的调研和分析,确定了采用热失控二合一监测传感器的需求。

        2.产品选型:在众多的传感器供应商中,该车企经过严格的评估和测试,选择了德克西尔的热失控二合一监测传感器,因其具有卓越的性能和可靠的质量。

        3.系统集成:将热失控二合一监测传感器与车辆的电池管理系统进行集成,实现了对电池状态的实时监测和控制。

        4.测试验证:在车辆生产过程中,对集成了热失控二合一监测传感器的系统进行了严格的测试和验证,确保其能够正常工作并满足安全要求。

        四、案例效果

        1.提高车辆安全性:通过实时监测电池热失控现象,该车企的乘用车能够及时发现并处理潜在的安全风险,大大提高了车辆的安全性。

        2.增强消费者信心:采用热失控二合一监测传感器的举措,向消费者展示了该车企对产品安全的高度重视,增强了消费者对其品牌的信心。

        3.提升企业竞争力:在竞争激烈的乘用车市场中,该车企凭借先进的电池安全技术,提升了自身的竞争力,为企业的可持续发展奠定了坚实的基础。

        五、总结与展望

        江苏某车企采用德克西尔的热失控二合一监测传感器,为乘用车电池热失控监测提供了一种有效的解决方案。该案例不仅为其他车企提供了借鉴和参考,也为推动电动汽车行业的安全发展做出了积极贡献。随着技术的不断进步,相信热失控监测技术将不断完善,为电动汽车的安全运行提供更加可靠的保障。


关注公众号

了解更多传感器知识

公众号:德克西尔

传感器产品二维码

加微信

购买传感器产品

微信号:Drksir-13515810281

相关内容推荐
电池热失控对电池寿命有何影响?

电池热失控对电池寿命有何影响?

        1.化学结构破坏        电池热失控过程中,电池内部会发生一系列剧烈的化学反应。例如在锂离子电池中,高温会导致正极材料的晶体结构发生变化。像常见的锂镍钴锰(NCM)三元正极材料,在热失控温度下,晶格中的锂离子会失去原有的有序排列,导致正极材料的性能下降。这种结构破坏是不可逆的,会使电池的容量和性能大幅降低。        同时,电池的负极材料也会受到影响。以石墨负极为例,高温可能会使石墨表面的固态电解质界面(SEI)膜破裂。SEI 膜原本起到保护负极和控制锂离子传输的作用,破裂后会导致负极与电解液直接接触,进一步引发副反应,加速电池的老化。        2.电解液分解与损耗        热失控会引起电解液的大量分解。电解液是电池中离子传输的介质,对于电池的正常工作至关重要。在高温下,电解液中的有机溶剂(如碳酸乙烯酯、碳酸二甲酯等)会发生分解反应。这些分解反应不仅消耗了电解液,还会产生气体,导致电池内部压力增大。        电解液分解后,其组成成分发生改变,离子传输能力下降。例如,分解产物可能会在电极表面形成一层钝化膜,阻碍锂离子的嵌入和脱出,从而降低电池的充放电效率。随着电解液的不断损耗和性能下降,电池的循环寿命会显著缩短。        3.内部短路的产生和加剧        热失控过程中,电池内部的隔膜可能会因为高温而熔化、收缩。隔膜的主要作用是防止电池正负极直接接触,一旦隔膜损害,就会导致正负极短路。例如,在热失控初期,隔膜的局部缺陷可能会引起轻微的短路,产生少量的热量。随着热失控的发展,短路情况会越来越严重。        短路会导致电池在充放电过程中出现异常的大电流,根据焦耳定律(Q = I²Rt,Q 为热量,I 为电流,R 为电阻,t 为时间),大电流会产生大量的热量,进一步加速电池的损坏,使电池的寿命急剧减少。这种恶性循环会使得电池很快失去其原有的功能。        4.活性物质脱落与损失        剧烈的温度变化和内部压力变化会导致电池电极上的活性物质脱落。例如,在高温下,正极材料的颗粒可能会从集流体上脱落。这些脱落的活性物质会在电池内部堆积,无法再参与电化学反应。        对于锂离子电池来说,活性物质的损失直接影响电池的容量。随着活性物质的不断脱落,电池的可用容量会逐渐降低。而且,脱落的物质可能会堵塞电池内部的通道,影响电解液的流动和离子的传输,进一步降低电池的性能和寿命。
2024.11.19
电池热失控整个过程是怎么样的?

电池热失控整个过程是怎么样的?

         1.诱发因素阶段        过充:过充是电池热失控常见的诱因之一。当电池充电电压超过其额定电压时,过多的电能被强制输入电池。例如,在锂离子电池中,正常充电截止电压一般在 4.2V 左右。如果充电系统出现故障或者充电控制不当,导致电压持续上升,电池内部的正极材料结构可能会发生变化。比如,锂镍钴锰氧化物(NCM)正极材料在过充时,会使锂离子过度脱出,导致正极材料的晶体结构发生不可逆的变化。同时,过充还会引起电解液的分解,产生大量的热量,这是热失控过程的起始点。        内部短路:电池内部短路可能是由于电池生产过程中的杂质混入、电池隔膜损坏等原因引起。例如,在电池组装过程中,如果有金属微粒混入正负极之间,就可能会导致短路。当内部短路发生时,电池的正负极直接接触,电流会在短时间内急剧增大。根据焦耳定律(Q = I²Rt,其中 Q 为热量,I 为电流,R 为电阻,t 为时间),由于短路电流 I 很大,会在局部产生大量的热量,从而引发电池温度的快速上升。        高温环境:当电池长时间处于高温环境中,电池内部的化学反应速率会加快。例如,在夏季高温天气下,如果电动汽车的电池散热系统出现故障,电池所处的环境温度可能会超过其安全工作温度范围(一般锂离子电池安全工作温度在 - 20℃ - 60℃)。高温会使电池内部的电解液活性增强,导致其分解反应更容易发生,并且正负极材料的性能也会受到影响,增加了热失控的风险。        2.热失控初期(自加热阶段)        一旦上述诱发因素导致电池内部产生热量,电池就进入了自加热阶段。在这个阶段,电池内部的化学反应开始加速。例如,对于锂离子电池,电解液的分解反应会随着温度的升高而加剧。分解反应产生的热量会进一步提高电池的温度,形成一个正反馈循环。此时,电池温度可能会从正常工作温度开始逐渐上升,比如从 30℃左右上升到 60℃ - 80℃。同时,电池可能会开始释放少量的气体,如氢气、二氧化碳等。这些气体的产生是由于电解液分解和正负极材料与电解液之间的反应。此时,电池热失控监测系统如果能够检测到温度和气体浓度的变化,就可以发出早期预警。        3.热失控中期(热失控触发阶段)        随着温度的持续升高,当达到一定的临界温度(不同电池类型临界温度不同,一般在 80℃ - 120℃左右),电池内部会发生一系列剧烈的化学反应,标志着热失控的正式触发。例如,在锂离子电池中,此时正极材料可能会发生剧烈的氧化还原反应,释放出大量的热量。同时,电池内部的隔膜会因为高温而熔化或者收缩,导致正负极之间的短路情况进一步恶化。电池内部的压力也会急剧上升,因为产生的大量气体无法及时排出。在这个阶段,电池的温度会迅速上升,可能在几分钟内就从 80℃左右上升到几百度。大量的热气体,包括一氧化碳、氢气等可燃有毒气体,会从电池中喷出。这些气体如果遇到火源或者在封闭空间内积聚,就会有爆炸或者使人中毒的危险。        4.热失控后期(剧烈反应和破坏阶段)        在热失控后期,电池内部的化学反应达到最剧烈的程度。电池外壳可能会因为内部的高压而破裂或者爆炸。例如,在一些锂离子动力电池组中,如果热失控没有得到及时控制,电池模组的外壳可能会被炸开,电池内部的物质会喷射出来。此时,燃烧反应可能会蔓延到整个电池组,引发更大规模的火灾。电池内部的正负极材料会在高温下发生各种复杂的化学反应,如燃烧、分解等。这些反应不仅会释放出更多的热量,还会产生大量的有害气体,对周围环境和设备造成严重的破坏。整个热失控过程从最初的诱发因素到最终的剧烈反应和破坏,时间可能从几分钟到几十分钟不等,具体取决于电池的类型、容量、初始诱发条件等因素。        
2024.11.18
电池热失控监测系统是如何做到预防电池热失控事故的发生的?

电池热失控监测系统是如何做到预防电池热失控事故的发生的?

        电池热失控监测系统对电池包前期产生气体浓度的检测是预防电池热失控事故的重要手段。        一、气体产生的原理与热失控的关联        1.氢气(H₂)        在电池的工作过程中,尤其是在锂离子电池中,当电池内部的电解液发生分解时会产生氢气。例如,在电池过充或者内部短路的情况下,电池的正负极材料可能会与电解液发生异常反应。对于锂金属电池,锂会与电解液中的有机溶剂发生反应,产生氢气。当氢气浓度开始上升,这往往是电池内部发生了严重的副反应,可能是热失控的前奏。因为氢气的产生通常伴随着大量的热量释放,而且氢气本身是一种易燃易爆气体,其积累会增加电池发生爆炸的风险。        2.二氧化碳(CO₂)        二氧化碳的产生也与电池内部的化学反应有关。当电池的负极材料(如石墨)在高温或者异常的电化学反应下,可能会与电解液中的某些成分发生反应,生成二氧化碳。另外,在电池热失控过程中,电池外壳材料或者电池内部的隔膜等有机成分燃烧也会产生二氧化碳。如果监测到二氧化碳浓度升高,这表明电池内部的化学反应已经超出了正常范围,可能是由于电池过热或者内部短路导致的,这是电池热失控正在发展的一个重要信号。        3.一氧化碳(CO)        一氧化碳通常是在电池内部有机成分不完全燃烧或者一些复杂的化学反应中产生的。比如,当电池隔膜受热分解或者电解液中的有机溶剂在高温下分解时,可能会产生一氧化碳。一氧化碳是一种有毒气体,它的出现意味着电池内部已经出现了较为严重的热失控情况,可能是由于电池长时间处于高温环境或者遭受了严重的外部撞击等原因导致的。        二、气体检测技术原理        1.电化学传感器        电化学传感器是检测气体浓度的常用技术之一。对于氢气检测,它利用氢气在电化学传感器中的电极表面发生氧化反应,产生电流信号。根据法拉第定律,产生的电流大小与氢气的浓度成正比。这种传感器具有高灵敏度和较好的选择性,能够在较低的氢气浓度下就发出警报。        对于一氧化碳和二氧化碳的检测,电化学传感器同样基于它们在电极表面的电化学反应。一氧化碳在传感器的工作电极上被氧化,二氧化碳则通过与传感器内的电解质发生反应,产生相应的电信号,从而实现对这两种气体浓度的精确测量。        2.红外吸收光谱技术        红外吸收光谱技术是基于不同气体分子对特定波长红外光的吸收特性。二氧化碳和一氧化碳在红外波段有特征吸收峰。例如,二氧化碳在 4.26μm 附近有强烈的吸收峰,一氧化碳在 4.6μm 左右有吸收峰。通过发射红外光并检测被气体吸收后的光强度变化,就可以计算出气体的浓度。这种技术具有高精度、非接触式的优点,能够快速准确地测量气体浓度,并且可以同时检测多种气体。        3.半导体气体传感器        半导体气体传感器利用某些金属氧化物半导体(如 SnO₂、ZnO 等)在吸附气体分子后其电学性能(如电阻)发生变化的原理。对于氢气检测,当氢气分子吸附在半导体表面时,会导致半导体的电阻下降。通过测量电阻的变化,可以确定氢气的浓度。对于一氧化碳和二氧化碳,也有类似的基于半导体材料与气体相互作用导致电学性质改变的检测机制,不过其选择性相对较弱,需要结合其他技术来提高对特定气体的检测准确性。        三、基于气体浓度检测的预警与控制策略        1.预警阈值设定        根据电池的类型、容量、工作环境等因素,设定不同气体浓度的预警阈值。例如,对于氢气浓度,当达到一定的体积分数(如 0.1% - 0.5%)时,系统就会发出一级预警,提示电池可能存在潜在的安全隐患。对于一氧化碳和二氧化碳,根据其与电池热失控的关联程度,也会设定相应的阈值。当一氧化碳浓度达到一定水平(如 50ppm - 100ppm)或者二氧化碳浓度超过一定范围(如 1% - 2%),系统会判断电池的安全状况正在恶化。        2.分级响应措施        当气体浓度超过预警阈值后,系统会采取相应的分级响应措施。在一级预警阶段,可能会启动简单的通风措施,将含有高浓度气体的空气排出电池舱,同时降低电池的充放电功率,以观察电池状态是否能够恢复正常。        如果气体浓度继续上升,达到二级预警甚至更高等级的预警,系统会采取更为激进的措施。例如,紧急切断电池的充放电电路,启动冷却系统,甚至通知相关人员进行紧急撤离,以避免电池热失控引发的严重后果,如火灾或者爆炸。
2024.11.18
在线客服

业务咨询

技术咨询

售后服务

PC端自动化二维码
135-1581-0281 (即时通话) 459879587 (在线询价) 135-1581-0281 (长按复制)
扫码加微信