新闻资讯

Technical articles

×

感谢您的支持,我会继续努力的!

扫码支持
扫码打赏,你说多少就多少

打开支付宝扫一扫,即可进行扫码打赏哦

首页 > 新闻资讯 > 技术文章

锂离子电池热失控预警系统的研究现状如何?

来源:德克西尔 时间:2024-12-13 10:00:52

        锂离子电池热失控预警系统的研究现状如下:
德克西尔锂离子电池热失控监测预警系统

        1.基于温度监测的预警技术

        优势:温度是反映锂离子电池热失控最直接的关键参数,易于测量且与热失控的相关性较高。通过在电池表面或内部布置温度传感器,能够实时监测电池的温度变化。当温度超过设定的阈值时,系统立即发出预警信号。这种方法简单直接,在实际应用中较为广泛。例如,部分电动汽车的电池管理系统(BMS)中就集成了温度监测模块,用于实时监测电池组的温度。

        不足:温度监测存在一定的滞后性,因为热失控发生时,电池内部的热量传递到表面需要一定的时间。此外,温度传感器的精度和可靠性也会受到环境因素(如温度、湿度、振动等)的影响,可能导致误报或漏报。

        2.基于电压监测的预警技术

        优势:锂离子电池在正常工作和热失控过程中,其电压会发生明显的变化。通过监测电池的电压变化,可以在一定程度上判断电池的工作状态。例如,当电池发生过充、过放或内部短路等异常情况时,电压会出现明显的波动或异常变化。基于电压监测的预警系统可以快速响应这些变化,及时发出预警信号。

        不足:电压监测容易受到电池老化、自放电等因素的影响,导致电压数据的不准确。此外,单一的电压监测参数可能无法全面反映电池的热失控状态,需要结合其他参数进行综合判断。

        3.基于气体监测的预警技术

        优势:锂离子电池在热失控过程中会产生各种气体,如氢气、一氧化碳、二氧化碳等。通过监测这些气体的浓度、成分和产生速率等信息,可以实现对热失控的早期预警。与温度和电压监测相比,气体监测具有更高的灵敏度和特异性,能够在热失控的早期阶段就检测到异常。例如,在锂离子电池过充早期会产生氢气,通过氢气探测技术可以快速检测到电池的异常,为热失控预警提供了新的思路。

        不足:气体监测技术需要高精度的气体传感器,且传感器的安装位置和数量会影响监测的效果。在实际应用中,由于电池系统的机械限制和成本因素,气体传感器的布置可能无法达到理想的状态,从而影响预警的准确性。此外,气体传感器的响应时间、稳定性和寿命等性能也需要进一步提高。

        4.基于压力监测的预警技术

        优势:锂离子电池热失控时,内部会产生大量的气体,导致电池内部压力升高。通过监测电池的内部压力变化,可以及时发现电池的异常情况。压力监测技术能够反映电池的整体状态,不受电池外部环境的影响,具有较高的可靠性。

        不足:压力传感器的精度和耐高温性能是影响压力监测的关键因素。在热失控的高温环境下,压力传感器可能会出现故障或测量误差,从而影响预警的准确性。此外,压力监测只能反映电池内部的压力变化,无法提供电池内部的温度、气体成分等详细信息,需要与其他监测技术结合使用。

        5.基于光纤传感的预警技术

        优势:光纤传感器具有抗电磁干扰、耐高温、耐腐蚀、体积小等优点,适合应用于锂离子电池的热失控预警。通过将光纤传感器植入电池内部,可以实时监测电池的温度、压力、折射率等多种参数,实现对电池热失控全过程的精准分析。例如,我国学者研发的多模态集成光纤传感器,能够在 1000℃的高温高压环境下正常工作,为锂离子电池热失控预警提供了新的技术手段。

        不足:光纤传感技术的成本较高,且光纤的安装和维护难度较大。在实际应用中,需要解决光纤与电池的兼容性问题,确保光纤传感器不会影响电池的性能和安全性。

        6.基于多参数融合的预警技术

        优势:单一的监测参数难以全面、准确地反映锂离子电池的热失控状态,因此,多参数融合的预警技术成为研究的热点。通过将温度、电压、气体、压力等多种监测参数进行融合分析,可以提高预警的准确性和可靠性。例如,利用人工智能、机器学习等算法对多参数数据进行处理和分析,能够建立更加准确的热失控预警模型。

        不足:多参数融合需要大量的实验数据和复杂的算法支持,开发难度较大。此外,不同参数之间的权重分配和数据融合方法也需要进一步研究和优化。


关注公众号

了解更多传感器知识

公众号:德克西尔

传感器产品二维码

加微信

购买传感器产品

微信号:Drksir-13515810281

相关内容推荐
电池热失控对电池寿命有何影响?

电池热失控对电池寿命有何影响?

        1.化学结构破坏        电池热失控过程中,电池内部会发生一系列剧烈的化学反应。例如在锂离子电池中,高温会导致正极材料的晶体结构发生变化。像常见的锂镍钴锰(NCM)三元正极材料,在热失控温度下,晶格中的锂离子会失去原有的有序排列,导致正极材料的性能下降。这种结构破坏是不可逆的,会使电池的容量和性能大幅降低。        同时,电池的负极材料也会受到影响。以石墨负极为例,高温可能会使石墨表面的固态电解质界面(SEI)膜破裂。SEI 膜原本起到保护负极和控制锂离子传输的作用,破裂后会导致负极与电解液直接接触,进一步引发副反应,加速电池的老化。        2.电解液分解与损耗        热失控会引起电解液的大量分解。电解液是电池中离子传输的介质,对于电池的正常工作至关重要。在高温下,电解液中的有机溶剂(如碳酸乙烯酯、碳酸二甲酯等)会发生分解反应。这些分解反应不仅消耗了电解液,还会产生气体,导致电池内部压力增大。        电解液分解后,其组成成分发生改变,离子传输能力下降。例如,分解产物可能会在电极表面形成一层钝化膜,阻碍锂离子的嵌入和脱出,从而降低电池的充放电效率。随着电解液的不断损耗和性能下降,电池的循环寿命会显著缩短。        3.内部短路的产生和加剧        热失控过程中,电池内部的隔膜可能会因为高温而熔化、收缩。隔膜的主要作用是防止电池正负极直接接触,一旦隔膜损害,就会导致正负极短路。例如,在热失控初期,隔膜的局部缺陷可能会引起轻微的短路,产生少量的热量。随着热失控的发展,短路情况会越来越严重。        短路会导致电池在充放电过程中出现异常的大电流,根据焦耳定律(Q = I²Rt,Q 为热量,I 为电流,R 为电阻,t 为时间),大电流会产生大量的热量,进一步加速电池的损坏,使电池的寿命急剧减少。这种恶性循环会使得电池很快失去其原有的功能。        4.活性物质脱落与损失        剧烈的温度变化和内部压力变化会导致电池电极上的活性物质脱落。例如,在高温下,正极材料的颗粒可能会从集流体上脱落。这些脱落的活性物质会在电池内部堆积,无法再参与电化学反应。        对于锂离子电池来说,活性物质的损失直接影响电池的容量。随着活性物质的不断脱落,电池的可用容量会逐渐降低。而且,脱落的物质可能会堵塞电池内部的通道,影响电解液的流动和离子的传输,进一步降低电池的性能和寿命。
2024.11.19
电池热失控监测系统是如何做到预防电池热失控事故的发生的?

电池热失控监测系统是如何做到预防电池热失控事故的发生的?

        电池热失控监测系统对电池包前期产生气体浓度的检测是预防电池热失控事故的重要手段。        一、气体产生的原理与热失控的关联        1.氢气(H₂)        在电池的工作过程中,尤其是在锂离子电池中,当电池内部的电解液发生分解时会产生氢气。例如,在电池过充或者内部短路的情况下,电池的正负极材料可能会与电解液发生异常反应。对于锂金属电池,锂会与电解液中的有机溶剂发生反应,产生氢气。当氢气浓度开始上升,这往往是电池内部发生了严重的副反应,可能是热失控的前奏。因为氢气的产生通常伴随着大量的热量释放,而且氢气本身是一种易燃易爆气体,其积累会增加电池发生爆炸的风险。        2.二氧化碳(CO₂)        二氧化碳的产生也与电池内部的化学反应有关。当电池的负极材料(如石墨)在高温或者异常的电化学反应下,可能会与电解液中的某些成分发生反应,生成二氧化碳。另外,在电池热失控过程中,电池外壳材料或者电池内部的隔膜等有机成分燃烧也会产生二氧化碳。如果监测到二氧化碳浓度升高,这表明电池内部的化学反应已经超出了正常范围,可能是由于电池过热或者内部短路导致的,这是电池热失控正在发展的一个重要信号。        3.一氧化碳(CO)        一氧化碳通常是在电池内部有机成分不完全燃烧或者一些复杂的化学反应中产生的。比如,当电池隔膜受热分解或者电解液中的有机溶剂在高温下分解时,可能会产生一氧化碳。一氧化碳是一种有毒气体,它的出现意味着电池内部已经出现了较为严重的热失控情况,可能是由于电池长时间处于高温环境或者遭受了严重的外部撞击等原因导致的。        二、气体检测技术原理        1.电化学传感器        电化学传感器是检测气体浓度的常用技术之一。对于氢气检测,它利用氢气在电化学传感器中的电极表面发生氧化反应,产生电流信号。根据法拉第定律,产生的电流大小与氢气的浓度成正比。这种传感器具有高灵敏度和较好的选择性,能够在较低的氢气浓度下就发出警报。        对于一氧化碳和二氧化碳的检测,电化学传感器同样基于它们在电极表面的电化学反应。一氧化碳在传感器的工作电极上被氧化,二氧化碳则通过与传感器内的电解质发生反应,产生相应的电信号,从而实现对这两种气体浓度的精确测量。        2.红外吸收光谱技术        红外吸收光谱技术是基于不同气体分子对特定波长红外光的吸收特性。二氧化碳和一氧化碳在红外波段有特征吸收峰。例如,二氧化碳在 4.26μm 附近有强烈的吸收峰,一氧化碳在 4.6μm 左右有吸收峰。通过发射红外光并检测被气体吸收后的光强度变化,就可以计算出气体的浓度。这种技术具有高精度、非接触式的优点,能够快速准确地测量气体浓度,并且可以同时检测多种气体。        3.半导体气体传感器        半导体气体传感器利用某些金属氧化物半导体(如 SnO₂、ZnO 等)在吸附气体分子后其电学性能(如电阻)发生变化的原理。对于氢气检测,当氢气分子吸附在半导体表面时,会导致半导体的电阻下降。通过测量电阻的变化,可以确定氢气的浓度。对于一氧化碳和二氧化碳,也有类似的基于半导体材料与气体相互作用导致电学性质改变的检测机制,不过其选择性相对较弱,需要结合其他技术来提高对特定气体的检测准确性。        三、基于气体浓度检测的预警与控制策略        1.预警阈值设定        根据电池的类型、容量、工作环境等因素,设定不同气体浓度的预警阈值。例如,对于氢气浓度,当达到一定的体积分数(如 0.1% - 0.5%)时,系统就会发出一级预警,提示电池可能存在潜在的安全隐患。对于一氧化碳和二氧化碳,根据其与电池热失控的关联程度,也会设定相应的阈值。当一氧化碳浓度达到一定水平(如 50ppm - 100ppm)或者二氧化碳浓度超过一定范围(如 1% - 2%),系统会判断电池的安全状况正在恶化。        2.分级响应措施        当气体浓度超过预警阈值后,系统会采取相应的分级响应措施。在一级预警阶段,可能会启动简单的通风措施,将含有高浓度气体的空气排出电池舱,同时降低电池的充放电功率,以观察电池状态是否能够恢复正常。        如果气体浓度继续上升,达到二级预警甚至更高等级的预警,系统会采取更为激进的措施。例如,紧急切断电池的充放电电路,启动冷却系统,甚至通知相关人员进行紧急撤离,以避免电池热失控引发的严重后果,如火灾或者爆炸。
2024.11.18
电池热失控监测系统的技术难点

电池热失控监测系统的技术难点

        一、传感器精度与可靠性        1.气体传感器精度挑战        电池包内部的环境较为复杂,气体成分多样且浓度变化范围大。例如,氢气在正常情况下浓度极低,但在热失控初期可能会快速上升。要精确检测这些气体的微小浓度变化,对传感器的精度要求极高。目前的热失控监测传感器易受到温度、湿度等环境因素的干扰,导致测量误差。        以电化学气体传感器为例,其检测原理是基于化学反应,环境中的其他化学物质可能会与传感器中的电极发生反应,影响氢气、一氧化碳等目标气体的检测准确性。在实际应用中,电池包内部的电解液泄漏等情况可能会干扰传感器的正常工作,使其无法准确感知气体浓度的真实变化。        2.传感器长期可靠性难题        商用车的运行环境复杂多变,包括不同的路况、气候条件等。传感器需要在长期的振动、高低温交替等恶劣条件下保持可靠的性能。长期的振动可能会导致传感器内部的元件松动或损坏,影响其测量精度和稳定性。        例如,在寒冷的冬季,传感器可能会出现响应变慢的情况;在炎热的夏季,高温可能会加速传感器材料的老化。而且,随着时间的推移,传感器的零点漂移现象也会逐渐显现,即传感器在没有目标气体存在时,输出信号也会发生变化,这就需要频繁的校准来保证其可靠性,但在商用车实际运行场景中,频繁校准很难实现。        二、数据处理与分析复杂性        1.复杂的数据干扰因素        电池包在正常工作过程中,气体参数会受到多种因素的影响。例如,充电和放电过程会使电池内部的化学反应产生正常的气体释放,这些气体的浓度变化和热失控初期的变化可能会相互混淆。而且,车辆行驶过程中的颠簸、加速和减速等工况变化也会对气体的分布和压力产生影响,使得数据的分析变得复杂。        另外,不同电池类型(如磷酸铁锂、三元锂电池等)在正常工作和热失控时的气体产生机制和参数变化规律也有所不同。对于监测系统来说,需要能够区分这些正常变化和异常变化,准确判断是否发生热失控。        2.实时性与准确性的平衡        为了能够及时预警热失控,数据处理系统需要在短时间内对大量的传感器数据进行分析。然而,过于追求实时性可能会导致数据分析的准确性下降。例如,采用简单的阈值判断方法可能会因为数据的瞬间波动而产生误报警。        同时,要提高准确性,就需要更复杂的数据分析算法,如机器学习算法等,但这些算法的计算量较大,可能会影响系统的实时响应速度。在商用车高速行驶等场景下,系统必须在几秒钟甚至更短的时间内做出准确的判断,这对数据处理系统的性能是一个巨大的挑战。        三、系统兼容性与集成性        1.与不同电池包的兼容困难        市场上商用车的电池包型号和规格繁多,不同电池包的结构、尺寸、气体排放通道等设计都有所不同。热失控监测系统需要能够适应各种类型的电池包,确保传感器能够准确地安装在合适的位置,以获取最有效的气体参数。        例如,一些电池包的气体排放口位置特殊,监测系统的传感器安装需要考虑如何在不影响电池包正常功能的前提下,有效地采集气体样本。而且,不同电池包的内部气体流动特性也不同,这会影响传感器对气体浓度变化的感知,需要针对不同的电池包进行专门的系统设计和优化。        2.与车辆其他系统的集成挑战        电池热失控监测系统需要与商用车的其他系统(如车辆控制系统、仪表显示系统、报警系统等)进行集成。在集成过程中,可能会出现信号干扰、通信协议不兼容等问题。        例如,车辆控制系统可能会产生电磁干扰,影响监测系统的数据传输。而且,不同车辆制造商的通信协议不同,监测系统需要能够兼容多种协议,以便将预警信息准确地传输给车辆的仪表显示系统和报警系统,使驾驶员能够及时收到警报并采取措施。
2024.11.15
在线客服

业务咨询

技术咨询

售后服务

PC端自动化二维码