新闻资讯

Technical articles

×

感谢您的支持,我会继续努力的!

扫码支持
扫码打赏,你说多少就多少

打开支付宝扫一扫,即可进行扫码打赏哦

首页 > 新闻资讯 > NEWS

What is the process of thermal runaway of the battery?

来源:DrKsir 时间:2024-11-25 15:00:35

        德克西尔电池热失控监测系统

                

        1. Stage of inducing factors

        Overcharge: Overcharge is one of the common causes of battery thermal runaway. When the battery charging voltage exceeds its rated voltage, too much electrical energy is forced into the battery. For example, in lithium-ion batteries, the normal charge cutoff voltage is generally around 4.2V. If the charging system fails or the charging control is not proper, resulting in a continuous rise in voltage, the positive electrode material structure inside the battery may change. For example, when lithium nickel cobalt manganese oxide (NCM) cathode material is overcharged, lithium ions will be excessively removed, resulting in irreversible changes in the crystal structure of the positive electrode material. At the same time, overcharging will also cause the decomposition of the electrolyte, generating a lot of heat, which is the starting point of the thermal runaway process.

        Internal short circuit: The internal short circuit of the battery may be caused by impurities in the battery production process, battery diaphragm damage and other reasons. For example, in the battery assembly process, if there are metal particles mixed between the positive and negative electrodes, it may cause a short circuit. When the internal short circuit occurs, the positive and negative electrodes of the battery are in direct contact, and the current will increase sharply in a short time. According to Joule's law (Q = I²Rt, where Q is heat, I is current, R is resistance, and t is time), because the short circuit current I is large, a large amount of heat will be generated locally, which will trigger a rapid rise in battery temperature.

        High temperature environment: When the battery is in a high temperature environment for a long time, the chemical reaction rate inside the battery will be accelerated. For example, in the summer high temperature weather, if the battery cooling system of the electric vehicle fails, the ambient temperature of the battery may exceed its safe operating temperature range (the general safe operating temperature of lithium-ion batteries is -20 ℃ -60 ℃). High temperature will enhance the activity of the electrolyte inside the battery, causing its decomposition reaction to occur more easily, and the performance of the positive and negative electrode materials will also be affected, increasing the risk of thermal runaway.

        2. Initial thermal runaway (self-heating stage)

        Once the above inducible factors cause heat to be generated inside the battery, the battery enters the self-heating stage. At this stage, the chemical reactions inside the battery begin to accelerate. For lithium-ion batteries, for example, the decomposition reaction of the electrolyte intensifies as the temperature increases. The heat generated by the decomposition reaction further increases the temperature of the battery, creating a positive feedback loop. At this time, the battery temperature may gradually rise from the normal operating temperature, such as from about 30 ° C to 60-80 ° C. At the same time, the battery may begin to release small amounts of gases, such as hydrogen, carbon dioxide, etc. These gases are produced due to the decomposition of the electrolyte and the reaction between the positive and negative electrode materials and the electrolyte. At this point, the battery thermal runaway monitoring system can issue an early warning if it can detect changes in temperature and gas concentration.

        3. Thermal runaway metaphase (thermal runaway trigger stage)

        As the temperature continues to rise, when a certain critical temperature is reached (the critical temperature is different for different battery types, generally around 80℃ -120 ℃), a series of violent chemical reactions will occur inside the battery, marking the formal trigger of thermal runaway. For example, in lithium-ion batteries, the cathode material may undergo a violent REDOX reaction at this time, releasing a large amount of heat. At the same time, the diaphragm inside the battery will melt or shrink due to high temperature, resulting in a further worsening of the short circuit between the positive and negative electrodes. The pressure inside the battery will also rise sharply, because the large amount of gas generated cannot be discharged in time. At this stage, the temperature of the battery will rise rapidly, possibly from about 80 ° C to several hundred degrees in a few minutes. A large amount of hot gases, including flammable toxic gases such as carbon monoxide and hydrogen, will be expelled from the battery. These gases, if exposed to a source of fire or accumulated in an enclosed space, pose a risk of explosion or poisoning.

        4. Thermal runaway stage (violent reaction and destruction stage)

        At the late stage of thermal runaway, the chemical reaction inside the battery reaches its most intense level. The battery case can rupture or explode due to the high pressure inside. For example, in some lithium-ion power battery packs, if the thermal runaway is not controlled in time, the housing of the battery module may be blown open, and the material inside the battery will be ejected. At this point, the combustion reaction can spread throughout the battery pack, starting a larger fire. The positive and negative electrode materials inside the battery will undergo various complex chemical reactions at high temperatures, such as combustion and decomposition. These reactions will not only release more heat, but also produce a large amount of harmful gases, causing serious damage to the surrounding environment and equipment. The entire thermal runaway process from the initial inducement factor to the final violent reaction and destruction can take anywhere from a few minutes to tens of minutes, depending on the type of battery, capacity, initial induction conditions and other factors.


关注公众号

了解更多传感器知识

公众号:德克西尔

传感器产品二维码

加微信

购买传感器产品

微信号:Drksir-13515810281

相关内容推荐
电池热失控监测系统是如何做到预防电池热失控事故的发生的?

电池热失控监测系统是如何做到预防电池热失控事故的发生的?

        电池热失控监测系统对电池包前期产生气体浓度的检测是预防电池热失控事故的重要手段。        一、气体产生的原理与热失控的关联        1.氢气(H₂)        在电池的工作过程中,尤其是在锂离子电池中,当电池内部的电解液发生分解时会产生氢气。例如,在电池过充或者内部短路的情况下,电池的正负极材料可能会与电解液发生异常反应。对于锂金属电池,锂会与电解液中的有机溶剂发生反应,产生氢气。当氢气浓度开始上升,这往往是电池内部发生了严重的副反应,可能是热失控的前奏。因为氢气的产生通常伴随着大量的热量释放,而且氢气本身是一种易燃易爆气体,其积累会增加电池发生爆炸的风险。        2.二氧化碳(CO₂)        二氧化碳的产生也与电池内部的化学反应有关。当电池的负极材料(如石墨)在高温或者异常的电化学反应下,可能会与电解液中的某些成分发生反应,生成二氧化碳。另外,在电池热失控过程中,电池外壳材料或者电池内部的隔膜等有机成分燃烧也会产生二氧化碳。如果监测到二氧化碳浓度升高,这表明电池内部的化学反应已经超出了正常范围,可能是由于电池过热或者内部短路导致的,这是电池热失控正在发展的一个重要信号。        3.一氧化碳(CO)        一氧化碳通常是在电池内部有机成分不完全燃烧或者一些复杂的化学反应中产生的。比如,当电池隔膜受热分解或者电解液中的有机溶剂在高温下分解时,可能会产生一氧化碳。一氧化碳是一种有毒气体,它的出现意味着电池内部已经出现了较为严重的热失控情况,可能是由于电池长时间处于高温环境或者遭受了严重的外部撞击等原因导致的。        二、气体检测技术原理        1.电化学传感器        电化学传感器是检测气体浓度的常用技术之一。对于氢气检测,它利用氢气在电化学传感器中的电极表面发生氧化反应,产生电流信号。根据法拉第定律,产生的电流大小与氢气的浓度成正比。这种传感器具有高灵敏度和较好的选择性,能够在较低的氢气浓度下就发出警报。        对于一氧化碳和二氧化碳的检测,电化学传感器同样基于它们在电极表面的电化学反应。一氧化碳在传感器的工作电极上被氧化,二氧化碳则通过与传感器内的电解质发生反应,产生相应的电信号,从而实现对这两种气体浓度的精确测量。        2.红外吸收光谱技术        红外吸收光谱技术是基于不同气体分子对特定波长红外光的吸收特性。二氧化碳和一氧化碳在红外波段有特征吸收峰。例如,二氧化碳在 4.26μm 附近有强烈的吸收峰,一氧化碳在 4.6μm 左右有吸收峰。通过发射红外光并检测被气体吸收后的光强度变化,就可以计算出气体的浓度。这种技术具有高精度、非接触式的优点,能够快速准确地测量气体浓度,并且可以同时检测多种气体。        3.半导体气体传感器        半导体气体传感器利用某些金属氧化物半导体(如 SnO₂、ZnO 等)在吸附气体分子后其电学性能(如电阻)发生变化的原理。对于氢气检测,当氢气分子吸附在半导体表面时,会导致半导体的电阻下降。通过测量电阻的变化,可以确定氢气的浓度。对于一氧化碳和二氧化碳,也有类似的基于半导体材料与气体相互作用导致电学性质改变的检测机制,不过其选择性相对较弱,需要结合其他技术来提高对特定气体的检测准确性。        三、基于气体浓度检测的预警与控制策略        1.预警阈值设定        根据电池的类型、容量、工作环境等因素,设定不同气体浓度的预警阈值。例如,对于氢气浓度,当达到一定的体积分数(如 0.1% - 0.5%)时,系统就会发出一级预警,提示电池可能存在潜在的安全隐患。对于一氧化碳和二氧化碳,根据其与电池热失控的关联程度,也会设定相应的阈值。当一氧化碳浓度达到一定水平(如 50ppm - 100ppm)或者二氧化碳浓度超过一定范围(如 1% - 2%),系统会判断电池的安全状况正在恶化。        2.分级响应措施        当气体浓度超过预警阈值后,系统会采取相应的分级响应措施。在一级预警阶段,可能会启动简单的通风措施,将含有高浓度气体的空气排出电池舱,同时降低电池的充放电功率,以观察电池状态是否能够恢复正常。        如果气体浓度继续上升,达到二级预警甚至更高等级的预警,系统会采取更为激进的措施。例如,紧急切断电池的充放电电路,启动冷却系统,甚至通知相关人员进行紧急撤离,以避免电池热失控引发的严重后果,如火灾或者爆炸。
2024.11.18
电池热失控监测系统的技术难点

电池热失控监测系统的技术难点

        一、传感器精度与可靠性        1.气体传感器精度挑战        电池包内部的环境较为复杂,气体成分多样且浓度变化范围大。例如,氢气在正常情况下浓度极低,但在热失控初期可能会快速上升。要精确检测这些气体的微小浓度变化,对传感器的精度要求极高。目前的热失控监测传感器易受到温度、湿度等环境因素的干扰,导致测量误差。        以电化学气体传感器为例,其检测原理是基于化学反应,环境中的其他化学物质可能会与传感器中的电极发生反应,影响氢气、一氧化碳等目标气体的检测准确性。在实际应用中,电池包内部的电解液泄漏等情况可能会干扰传感器的正常工作,使其无法准确感知气体浓度的真实变化。        2.传感器长期可靠性难题        商用车的运行环境复杂多变,包括不同的路况、气候条件等。传感器需要在长期的振动、高低温交替等恶劣条件下保持可靠的性能。长期的振动可能会导致传感器内部的元件松动或损坏,影响其测量精度和稳定性。        例如,在寒冷的冬季,传感器可能会出现响应变慢的情况;在炎热的夏季,高温可能会加速传感器材料的老化。而且,随着时间的推移,传感器的零点漂移现象也会逐渐显现,即传感器在没有目标气体存在时,输出信号也会发生变化,这就需要频繁的校准来保证其可靠性,但在商用车实际运行场景中,频繁校准很难实现。        二、数据处理与分析复杂性        1.复杂的数据干扰因素        电池包在正常工作过程中,气体参数会受到多种因素的影响。例如,充电和放电过程会使电池内部的化学反应产生正常的气体释放,这些气体的浓度变化和热失控初期的变化可能会相互混淆。而且,车辆行驶过程中的颠簸、加速和减速等工况变化也会对气体的分布和压力产生影响,使得数据的分析变得复杂。        另外,不同电池类型(如磷酸铁锂、三元锂电池等)在正常工作和热失控时的气体产生机制和参数变化规律也有所不同。对于监测系统来说,需要能够区分这些正常变化和异常变化,准确判断是否发生热失控。        2.实时性与准确性的平衡        为了能够及时预警热失控,数据处理系统需要在短时间内对大量的传感器数据进行分析。然而,过于追求实时性可能会导致数据分析的准确性下降。例如,采用简单的阈值判断方法可能会因为数据的瞬间波动而产生误报警。        同时,要提高准确性,就需要更复杂的数据分析算法,如机器学习算法等,但这些算法的计算量较大,可能会影响系统的实时响应速度。在商用车高速行驶等场景下,系统必须在几秒钟甚至更短的时间内做出准确的判断,这对数据处理系统的性能是一个巨大的挑战。        三、系统兼容性与集成性        1.与不同电池包的兼容困难        市场上商用车的电池包型号和规格繁多,不同电池包的结构、尺寸、气体排放通道等设计都有所不同。热失控监测系统需要能够适应各种类型的电池包,确保传感器能够准确地安装在合适的位置,以获取最有效的气体参数。        例如,一些电池包的气体排放口位置特殊,监测系统的传感器安装需要考虑如何在不影响电池包正常功能的前提下,有效地采集气体样本。而且,不同电池包的内部气体流动特性也不同,这会影响传感器对气体浓度变化的感知,需要针对不同的电池包进行专门的系统设计和优化。        2.与车辆其他系统的集成挑战        电池热失控监测系统需要与商用车的其他系统(如车辆控制系统、仪表显示系统、报警系统等)进行集成。在集成过程中,可能会出现信号干扰、通信协议不兼容等问题。        例如,车辆控制系统可能会产生电磁干扰,影响监测系统的数据传输。而且,不同车辆制造商的通信协议不同,监测系统需要能够兼容多种协议,以便将预警信息准确地传输给车辆的仪表显示系统和报警系统,使驾驶员能够及时收到警报并采取措施。
2024.11.15
守护商用车安全的电池包热失控监测系统

守护商用车安全的电池包热失控监测系统

        一、商用车安全面临的挑战        在现代交通运输的广阔舞台上,商用车无疑扮演着举足轻重的重要角色,它们穿梭于各个城市之间,承载着货物与希望。然而,随着电动商用车的日益普及,电池安全问题也成为了人们关注的焦点。电池包热失控犹如一颗隐藏在车辆中的定时炸弹,一旦发生,后果不堪设想。电池热失控现象可能由多种原因引起,如电池内部短路、过充过放、外部高温等。当热失控发生时,电池温度会迅速升高,极可能引发火灾甚至爆炸,对车辆、货物以及司乘人员的生命财产安全构成严重威胁。        二、电池包热失控监测系统的独特监测对象        电池包热失控监测系统监测的是电池包内部的气体泄漏,包括氢气、一氧化碳、二氧化碳以及内部气压等。这些气体参数的变化往往是电池热失控的早期信号。例如,当电池内部发生异常反应时,可能会产生氢气和一氧化碳等可燃气体,而二氧化碳的含量变化也能反映出电池的化学反应情况。同时,气压的变化也可以提示电池内部是否存在异常压力积累。        三、电池包热失控监测系统的技术原理        该系统主要依靠先进的传感器技术来实现对电池包内部气体参数的精准监测。在电池包内布置高灵敏度的电池热失控监测传感器,这些传感器能够实时感知氢气、一氧化碳、二氧化碳等气体的浓度变化以及气压的波动。传感器将采集到的数据以电信号的形式传输给电池管理系统。        电池管理系统运用复杂的数据处理算法,对这些数据进行分析和判断。通过与预设的安全阈值进行对比,一旦发现气体参数超出正常范围,系统就会立即启动预警机制。例如,如果氢气浓度超过一定值,或者气压上升速度过快,系统会迅速发出警报。        此外,系统还具备智能学习功能。随着时间的推移和数据的积累,系统能够不断优化自身的算法,提高监测的准确性和可靠性,更好地适应不同的工作环境和电池状态。        四、系统的功能特点        1.精准监测和预警功能        能够准确地监测电池包内部各种气体参数的细微变化,一旦发现异常,立即通过声光报警、仪表盘显示等方式向驾驶员发出警报,为及时采取应对措施争取宝贵时间。        2.数据记录和分析功能        记录电池在不同工作状态下的气体参数变化,为后续的故障诊断和性能优化提供详细的数据支持。通过对大量数据的深入分析,研发人员可以不断改进系统的算法和性能,提高监测的准确性和可靠性。        五、应用案例展示        1.物流企业的成功避险        在某物流企业,一批电动商用车安装了电池包热失控监测系统。在一次运输过程中,系统监测到电池包内氢气含量略有上升,气压也出现了轻微变化。驾驶员接到警报后,立即停车检查,并联系了维修人员。经检查,发现是电池内部有轻微的异常反应。由于发现及时,避免了热失控事故的发生,保障了车辆和货物的安全,也为企业挽回了潜在的经济损失。        2.电动公交车的安全保障        一辆电动公交车在行驶过程中,电池包热失控监测系统检测到一氧化碳含量超出安全范围。驾驶员迅速将车辆停靠在安全地带,并疏散了乘客。维修人员赶到现场后,确定是电池出现了局部过热现象,及时进行了处理,避免了严重后果的发生。        六、总结与展望        对于商用车来说,电池包热失控监测系统的重要性不言而喻。它以独特的气体参数监测方式,为车辆的安全运行提供了坚实的保障。在长途运输中,驾驶员可以更加安心地行驶,不必时刻担忧电池安全问题。同时,对于企业来说,减少了因电池故障导致的车辆停运和维修成本,提高了运营效率。        在科技不断进步的今天,电池包热失控监测系统将继续发挥着重要的作用。随着技术的不断升级,它将更加精准地监测电池包内部的各种参数,为商用车的安全运行保驾护航。让我们共同期待,在这个先进技术的守护下,商用车能够在安全的道路上飞驰,为我们的生活带来更多的便利和繁荣。
2024.11.15
在线客服

业务咨询

技术咨询

售后服务

PC端自动化二维码
135-1581-0281 (即时通话) 459879587 (在线询价) 135-1581-0281 (长按复制)
扫码加微信