新闻资讯

Technical articles

×

感谢您的支持,我会继续努力的!

扫码支持
扫码打赏,你说多少就多少

打开支付宝扫一扫,即可进行扫码打赏哦

首页 > 新闻资讯 > NEWS

How does the battery thermal runaway monitoring system prevent the battery thermal runaway accident?

来源:DrKsir 时间:2024-11-26 10:01:18

        The detection of gas concentration in the early stage of battery pack by battery thermal runaway monitoring system is an important means to prevent battery thermal runaway accidents.

        First,The principle of gas generation is related to thermal runaway

        1. Hydrogen (H₂)

        During the operation of the battery, especially in lithium-ion batteries, hydrogen gas is produced when the electrolyte inside the battery breaks down. For example, in the case of overcharging or internal short circuit of the battery, the positive and negative electrode materials of the battery may react abnormally with the electrolyte. For lithium-metal batteries, lithium reacts with organic solvents in the electrolyte to produce hydrogen. When the hydrogen concentration begins to rise, this is often a serious side reaction occurring inside the battery, which may be a prelude to thermal runaway. Because the production of hydrogen is usually accompanied by a large amount of heat release, and hydrogen itself is a flammable and explosive gas, its accumulation will increase the risk of battery explosion.

        2. Carbon Dioxide (CO₂)

        The production of carbon dioxide is also related to chemical reactions inside the battery. When the negative electrode material of the battery (such as graphite) is under high temperature or abnormal electrochemical reaction, it may react with some components in the electrolyte to produce carbon dioxide. In addition, during the thermal runaway process of the battery, the combustion of organic components such as the battery housing material or the diaphragm inside the battery will also produce carbon dioxide. If the concentration of carbon dioxide is increased, it indicates that the chemical reaction inside the battery has gone beyond the normal range, possibly due to the battery overheating or internal short circuit, which is an important signal that the battery thermal runaway is developing.

        3. Carbon Monoxide (CO)

        Carbon monoxide is usually produced by incomplete combustion of organic components inside batteries or some complex chemical reaction. For example, carbon monoxide may be produced when the battery separator breaks down with heat or when the organic solvent in the electrolyte breaks down at high temperatures. Carbon monoxide is a toxic gas, and its appearance means that there has been a more serious thermal runaway inside the battery, which may be caused by the battery being in a high temperature environment for a long time or suffering a serious external impact.

        Second, the principle of gas detection technology

        1. Electrochemical sensor

        Electrochemical sensor is one of the common techniques for detecting gas concentration. For hydrogen detection, it uses hydrogen to undergo oxidation reaction on the electrode surface of the electrochemical sensor to generate a current signal. According to Faraday's law, the current generated is proportional to the concentration of hydrogen. This sensor has high sensitivity and good selectivity, and can send alarms at low hydrogen concentration.

        For the detection of carbon monoxide and carbon dioxide, electrochemical sensors are also based on their electrochemical reactions at the electrode surface. The carbon monoxide is oxidized on the sensor's working electrode, and the carbon dioxide reacts with the electrolyte in the sensor to produce the corresponding electrical signal, thus achieving accurate measurement of the concentration of these two gases.

        2. Infrared absorption spectroscopy

        Infrared absorption spectroscopy is based on the absorption characteristics of different gas molecules to specific wavelengths of infrared light. Carbon dioxide and carbon monoxide have characteristic absorption peaks in infrared band. For example, carbon dioxide has a strong absorption peak near 4.26μm, and carbon monoxide has an absorption peak around 4.6μm. By emitting infrared light and detecting the change in light intensity after being absorbed by the gas, the concentration of the gas can be calculated. This technology has the advantage of high precision, non-contact, rapid and accurate measurement of gas concentrations, and can detect multiple gases simultaneously.

        3. Semiconductor gas sensor

        Semiconductor gas sensors use the principle that certain metal oxide semiconductors (such as SnO₂, ZnO, etc.) change their electrical properties (such as resistance) after adsorbing gas molecules. For hydrogen detection, when hydrogen molecules are adsorbed on the semiconductor surface, the resistance of the semiconductor will decrease. By measuring the change in resistance, the concentration of hydrogen can be determined. For carbon monoxide and carbon dioxide, there are similar detection mechanisms based on the change of electrical properties caused by the interaction of semiconductor materials with gases, but their selectivity is relatively weak, and other techniques are needed to improve the detection accuracy of specific gases.

        Third,Early warning and control strategy based on gas concentration detection

        1. Set the alarm threshold

        According to the battery type, capacity, working environment and other factors, set different gas concentration warning thresholds. For example, for hydrogen concentration, when a certain volume fraction (such as 0.1-0.5%) is reached, the system will issue a level one warning, indicating that the battery may have potential safety hazards. For carbon monoxide and carbon dioxide, thresholds are also set depending on the degree to which they are associated with thermal runaway of the battery. When the concentration of carbon monoxide reaches a certain level (such as 50ppm to 100ppm) or the concentration of carbon dioxide exceeds a certain range (such as 1%-2%), the system will determine that the safety condition of the battery is deteriorating.

        2. Hierarchical response measures

        When the gas concentration exceeds the alarm threshold, the system takes corresponding response measures. In the first warning stage, simple ventilation measures may be initiated to expel the air containing a high concentration of gas from the battery compartment, while reducing the battery's charge and discharge power to see if the battery status can return to normal.

        If gas concentrations continue to rise, reaching a level two alert or higher, the system will take more aggressive measures. For example, emergency cut off the battery's charge and discharge circuit, start the cooling system, and even notify the relevant personnel for emergency evacuation to avoid serious consequences caused by the battery's thermal runaway, such as fire or explosion.


关注公众号

了解更多传感器知识

公众号:德克西尔

传感器产品二维码

加微信

购买传感器产品

微信号:Drksir-13515810281

相关内容推荐
电池热失控监测系统的技术难点

电池热失控监测系统的技术难点

        一、传感器精度与可靠性        1.气体传感器精度挑战        电池包内部的环境较为复杂,气体成分多样且浓度变化范围大。例如,氢气在正常情况下浓度极低,但在热失控初期可能会快速上升。要精确检测这些气体的微小浓度变化,对传感器的精度要求极高。目前的热失控监测传感器易受到温度、湿度等环境因素的干扰,导致测量误差。        以电化学气体传感器为例,其检测原理是基于化学反应,环境中的其他化学物质可能会与传感器中的电极发生反应,影响氢气、一氧化碳等目标气体的检测准确性。在实际应用中,电池包内部的电解液泄漏等情况可能会干扰传感器的正常工作,使其无法准确感知气体浓度的真实变化。        2.传感器长期可靠性难题        商用车的运行环境复杂多变,包括不同的路况、气候条件等。传感器需要在长期的振动、高低温交替等恶劣条件下保持可靠的性能。长期的振动可能会导致传感器内部的元件松动或损坏,影响其测量精度和稳定性。        例如,在寒冷的冬季,传感器可能会出现响应变慢的情况;在炎热的夏季,高温可能会加速传感器材料的老化。而且,随着时间的推移,传感器的零点漂移现象也会逐渐显现,即传感器在没有目标气体存在时,输出信号也会发生变化,这就需要频繁的校准来保证其可靠性,但在商用车实际运行场景中,频繁校准很难实现。        二、数据处理与分析复杂性        1.复杂的数据干扰因素        电池包在正常工作过程中,气体参数会受到多种因素的影响。例如,充电和放电过程会使电池内部的化学反应产生正常的气体释放,这些气体的浓度变化和热失控初期的变化可能会相互混淆。而且,车辆行驶过程中的颠簸、加速和减速等工况变化也会对气体的分布和压力产生影响,使得数据的分析变得复杂。        另外,不同电池类型(如磷酸铁锂、三元锂电池等)在正常工作和热失控时的气体产生机制和参数变化规律也有所不同。对于监测系统来说,需要能够区分这些正常变化和异常变化,准确判断是否发生热失控。        2.实时性与准确性的平衡        为了能够及时预警热失控,数据处理系统需要在短时间内对大量的传感器数据进行分析。然而,过于追求实时性可能会导致数据分析的准确性下降。例如,采用简单的阈值判断方法可能会因为数据的瞬间波动而产生误报警。        同时,要提高准确性,就需要更复杂的数据分析算法,如机器学习算法等,但这些算法的计算量较大,可能会影响系统的实时响应速度。在商用车高速行驶等场景下,系统必须在几秒钟甚至更短的时间内做出准确的判断,这对数据处理系统的性能是一个巨大的挑战。        三、系统兼容性与集成性        1.与不同电池包的兼容困难        市场上商用车的电池包型号和规格繁多,不同电池包的结构、尺寸、气体排放通道等设计都有所不同。热失控监测系统需要能够适应各种类型的电池包,确保传感器能够准确地安装在合适的位置,以获取最有效的气体参数。        例如,一些电池包的气体排放口位置特殊,监测系统的传感器安装需要考虑如何在不影响电池包正常功能的前提下,有效地采集气体样本。而且,不同电池包的内部气体流动特性也不同,这会影响传感器对气体浓度变化的感知,需要针对不同的电池包进行专门的系统设计和优化。        2.与车辆其他系统的集成挑战        电池热失控监测系统需要与商用车的其他系统(如车辆控制系统、仪表显示系统、报警系统等)进行集成。在集成过程中,可能会出现信号干扰、通信协议不兼容等问题。        例如,车辆控制系统可能会产生电磁干扰,影响监测系统的数据传输。而且,不同车辆制造商的通信协议不同,监测系统需要能够兼容多种协议,以便将预警信息准确地传输给车辆的仪表显示系统和报警系统,使驾驶员能够及时收到警报并采取措施。
2024.11.15
守护商用车安全的电池包热失控监测系统

守护商用车安全的电池包热失控监测系统

        一、商用车安全面临的挑战        在现代交通运输的广阔舞台上,商用车无疑扮演着举足轻重的重要角色,它们穿梭于各个城市之间,承载着货物与希望。然而,随着电动商用车的日益普及,电池安全问题也成为了人们关注的焦点。电池包热失控犹如一颗隐藏在车辆中的定时炸弹,一旦发生,后果不堪设想。电池热失控现象可能由多种原因引起,如电池内部短路、过充过放、外部高温等。当热失控发生时,电池温度会迅速升高,极可能引发火灾甚至爆炸,对车辆、货物以及司乘人员的生命财产安全构成严重威胁。        二、电池包热失控监测系统的独特监测对象        电池包热失控监测系统监测的是电池包内部的气体泄漏,包括氢气、一氧化碳、二氧化碳以及内部气压等。这些气体参数的变化往往是电池热失控的早期信号。例如,当电池内部发生异常反应时,可能会产生氢气和一氧化碳等可燃气体,而二氧化碳的含量变化也能反映出电池的化学反应情况。同时,气压的变化也可以提示电池内部是否存在异常压力积累。        三、电池包热失控监测系统的技术原理        该系统主要依靠先进的传感器技术来实现对电池包内部气体参数的精准监测。在电池包内布置高灵敏度的电池热失控监测传感器,这些传感器能够实时感知氢气、一氧化碳、二氧化碳等气体的浓度变化以及气压的波动。传感器将采集到的数据以电信号的形式传输给电池管理系统。        电池管理系统运用复杂的数据处理算法,对这些数据进行分析和判断。通过与预设的安全阈值进行对比,一旦发现气体参数超出正常范围,系统就会立即启动预警机制。例如,如果氢气浓度超过一定值,或者气压上升速度过快,系统会迅速发出警报。        此外,系统还具备智能学习功能。随着时间的推移和数据的积累,系统能够不断优化自身的算法,提高监测的准确性和可靠性,更好地适应不同的工作环境和电池状态。        四、系统的功能特点        1.精准监测和预警功能        能够准确地监测电池包内部各种气体参数的细微变化,一旦发现异常,立即通过声光报警、仪表盘显示等方式向驾驶员发出警报,为及时采取应对措施争取宝贵时间。        2.数据记录和分析功能        记录电池在不同工作状态下的气体参数变化,为后续的故障诊断和性能优化提供详细的数据支持。通过对大量数据的深入分析,研发人员可以不断改进系统的算法和性能,提高监测的准确性和可靠性。        五、应用案例展示        1.物流企业的成功避险        在某物流企业,一批电动商用车安装了电池包热失控监测系统。在一次运输过程中,系统监测到电池包内氢气含量略有上升,气压也出现了轻微变化。驾驶员接到警报后,立即停车检查,并联系了维修人员。经检查,发现是电池内部有轻微的异常反应。由于发现及时,避免了热失控事故的发生,保障了车辆和货物的安全,也为企业挽回了潜在的经济损失。        2.电动公交车的安全保障        一辆电动公交车在行驶过程中,电池包热失控监测系统检测到一氧化碳含量超出安全范围。驾驶员迅速将车辆停靠在安全地带,并疏散了乘客。维修人员赶到现场后,确定是电池出现了局部过热现象,及时进行了处理,避免了严重后果的发生。        六、总结与展望        对于商用车来说,电池包热失控监测系统的重要性不言而喻。它以独特的气体参数监测方式,为车辆的安全运行提供了坚实的保障。在长途运输中,驾驶员可以更加安心地行驶,不必时刻担忧电池安全问题。同时,对于企业来说,减少了因电池故障导致的车辆停运和维修成本,提高了运营效率。        在科技不断进步的今天,电池包热失控监测系统将继续发挥着重要的作用。随着技术的不断升级,它将更加精准地监测电池包内部的各种参数,为商用车的安全运行保驾护航。让我们共同期待,在这个先进技术的守护下,商用车能够在安全的道路上飞驰,为我们的生活带来更多的便利和繁荣。
2024.11.15
储能电池热失控监测系统的主要应用场景有哪些?

储能电池热失控监测系统的主要应用场景有哪些?

                储能电池热失控监测系统主要有以下应用场景:        一、电力储能系统        1.电网侧储能        ●在电网侧,储能系统可以用于调峰调频、缓解电网阻塞、提高电网稳定性等。而热失控监测系统能够实时监测储能电池的状态,确保在电网频繁的充放电过程中,电池不会发生热失控现象,保障电网的安全稳定运行。例如,当电网负荷高峰时,储能系统放电以满足电力需求;负荷低谷时,储能系统充电储存更多的电力。在这个过程中,热失控监测系统可以及时发现电池的异常温度升高、气体泄漏等情况,并发出警报,以便运维人员采取相应措施。        ●参与电力辅助服务市场,如黑启动、无功补偿等。热失控监测系统可以为这些重要的电力服务提供安全保障,确保储能系统在关键时刻能够可靠运行。        2.用户侧储能        ●对于工业用户和商业用户来说,储能系统可以实现峰谷电价套利、提高供电可靠性等。热失控监测系统在此场景下可以实时监测电池状态,防止因热失控导致的停电事故,减少经济损失。例如,工厂可以在电价低谷时充电,高峰时放电,降低用电成本。热失控监测系统能够确保这个过程中电池的安全,避免因电池故障影响生产。        ●分布式能源系统中,如太阳能光伏发电 + 储能系统,热失控监测系统可以保障储能电池与光伏系统的协同工作,提高能源利用效率和系统的稳定性。        二、通信基站储能        通信基站需要不间断的电力供应以保证通信网络的正常运行。储能电池作为备用电源,在市电中断时发挥重要作用。热失控监测系统可以实时监测基站储能电池的状态,防止因热失控引发火灾等事故,确保通信网络的可靠性。特别是在偏远地区和应急通信场景下,热失控监测系统的重要性更加凸显。例如,在自然灾害导致市电中断时,通信基站的储能系统必须可靠运行,热失控监测系统可以及时发现电池问题,为抢修争取时间。        三、数据中心储能        数据中心对电力供应的稳定性要求极高,任何停电事故都可能导致数据丢失和业务中断,造成巨大的经济损失。储能系统可以作为数据中心的备用电源,保障电力的持续供应。热失控监测系统能够实时监测储能电池的状态,防止热失控对数据中心的安全造成威胁。例如,在市电中断时,储能系统迅速启动为数据中心供电,热失控监测系统可以确保电池在这个过程中的安全,避免因电池故障引发火灾或其他安全事故。        四、新能源汽车充电站储能        随着新能源汽车的普及,充电站的建设需求不断增加。储能系统可以用于平衡电网负荷、提高充电效率等。热失控监测系统可以实时监测充电站储能电池的状态,防止因热失控引发火灾,保障充电站的安全运行。例如,在充电高峰时段,储能系统可以释放电能,缓解电网压力;低谷时段充电,降低运营成本。热失控监测系统可以确保这个过程中电池的安全,为新能源汽车的发展提供可靠的基础设施支持。        五、应急电源系统        在医院、学校、政府机构等重要场所,应急电源系统是保障生命安全和基本运行的关键。储能电池作为应急电源的重要组成部分,热失控监测系统可以确保在紧急情况下电池能够可靠工作,为应急设备提供稳定的电力供应。例如,在医院的手术过程中或学校的紧急疏散时,应急电源系统必须能够迅速启动,热失控监测系统可以提前发现电池问题,确保应急电源的可靠性。
2024.08.30
在线客服

业务咨询

技术咨询

售后服务

PC端自动化二维码
135-1581-0281 (即时通话) 459879587 (在线询价) 135-1581-0281 (长按复制)
扫码加微信