新闻资讯

Technical articles

×

感谢您的支持,我会继续努力的!

扫码支持
扫码打赏,你说多少就多少

打开支付宝扫一扫,即可进行扫码打赏哦

首页 > 新闻资讯 > NEWS

Technical difficulties of battery thermal runaway monitoring system

来源:DrKsir 时间:2024-11-25 10:00:13

        First,Sensor accuracy and reliability

        1. Gas sensor accuracy challenge

        The environment inside the battery pack is more complex, and the gas composition is diverse and the concentration varies widely. For example, hydrogen gas, which is normally extremely low in concentration, may rise rapidly in the initial phase of thermal runaway. To accurately detect small changes in the concentration of these gases, the accuracy of the sensor is extremely high. The current thermal runaway monitoring sensors are susceptible to the interference of environmental factors such as temperature and humidity, resulting in measurement errors.

        Taking electrochemical gas sensors as an example, the detection principle is based on chemical reactions, and other chemicals in the environment may react with the electrodes in the sensor, affecting the detection accuracy of target gases such as hydrogen and carbon monoxide. In practical applications, conditions such as electrolyte leakage inside the battery pack may interfere with the normal operation of the sensor, making it impossible to accurately sense the true change in gas concentration.

        2. The sensor has long-term reliability problems

        The operating environment of commercial vehicles is complex and changeable, including different road conditions, climate conditions and so on. The sensor needs to maintain reliable performance under harsh conditions such as long-term vibration and alternating high and low temperatures. Long-term vibration may cause the components inside the sensor to loosen or damage, affecting its measurement accuracy and stability.

        For example, in the cold winter, the sensor may be slow to respond; In the hot summer, high temperatures may accelerate the aging of sensor materials. Moreover, with the passage of time, the phenomenon of zero drift of the sensor will gradually appear, that is, the output signal of the sensor will also change when there is no target gas, which requires frequent calibration to ensure its reliability, but in the actual operation scenario of commercial vehicles, frequent calibration is difficult to achieve.

        Second,Complexity of data processing and analysis

        1. Complex data interference factors

        During the normal operation of the battery pack, the gas parameters are affected by many factors. For example, the process of charging and discharging causes the chemical reactions inside the battery to produce normal gas releases, and the changes in the concentration of these gases and the changes in the initial phase of thermal runaway can confuse each other. Moreover, changes in operating conditions such as turbulence, acceleration and deceleration during vehicle driving will also have an impact on gas distribution and pressure, making data analysis complicated.

        In addition, different battery types (such as lithium iron phosphate, ternary lithium batteries, etc.) have different gas generation mechanisms and parameter changes during normal operation and thermal runaway. For monitoring systems, it is necessary to be able to distinguish between these normal changes and abnormal changes to accurately determine whether thermal runaway occurs.

        2. Balance of real-time and accuracy

        In order to be able to warn of thermal runaway in time, the data processing system needs to analyze a large number of sensor data in a short time. However, too much pursuit of real-time may lead to a decline in the accuracy of data analysis. For example, using a simple threshold judgment method may generate false alarms due to momentary fluctuations in data.

        At the same time, to improve the accuracy, you need more complex data analysis algorithms, such as machine learning algorithms, but these algorithms have a large amount of computation, which may affect the real-time response speed of the system. In scenarios such as high-speed driving of commercial vehicles, the system must make accurate judgments in a few seconds or even less, which is a huge challenge to the performance of the data processing system.

        Third, system compatibility and integration

        1. Compatibility with different battery packs is difficult

        There are many types and specifications of battery packs for commercial vehicles on the market, and different battery packs have different designs such as structure, size, and gas emission channels. Thermal runaway monitoring systems need to be able to adapt to various types of battery packs, ensuring that the sensor can be accurately installed in the right position to obtain the most efficient gas parameters.

        For example, the gas outlet of some battery packs is in a special position, and the sensor installation of the monitoring system needs to consider how to effectively collect gas samples without affecting the normal function of the battery pack. Moreover, the internal gas flow characteristics of different battery packs are also different, which affects the sensor's perception of changes in gas concentration, and requires special system design and optimization for different battery packs.

        2. Integration challenges with other vehicle systems

        The battery thermal runaway monitoring system needs to be integrated with other systems of commercial vehicles, such as vehicle control systems, instrument display systems, alarm systems, etc. In the integration process, there may be signal interference, communication protocol incompatibility and other problems.

        For example, the vehicle control system may generate electromagnetic interference that affects the data transmission of the monitoring system. Moreover, the communication protocols of different vehicle manufacturers are different, and the monitoring system needs to be compatible with a variety of protocols in order to accurately transmit the early warning information to the vehicle's instrument display system and alarm system, so that the driver can receive the alarm and take measures in time.


关注公众号

了解更多传感器知识

公众号:德克西尔

传感器产品二维码

加微信

购买传感器产品

微信号:Drksir-13515810281

相关内容推荐
守护商用车安全的电池包热失控监测系统

守护商用车安全的电池包热失控监测系统

        一、商用车安全面临的挑战        在现代交通运输的广阔舞台上,商用车无疑扮演着举足轻重的重要角色,它们穿梭于各个城市之间,承载着货物与希望。然而,随着电动商用车的日益普及,电池安全问题也成为了人们关注的焦点。电池包热失控犹如一颗隐藏在车辆中的定时炸弹,一旦发生,后果不堪设想。电池热失控现象可能由多种原因引起,如电池内部短路、过充过放、外部高温等。当热失控发生时,电池温度会迅速升高,极可能引发火灾甚至爆炸,对车辆、货物以及司乘人员的生命财产安全构成严重威胁。        二、电池包热失控监测系统的独特监测对象        电池包热失控监测系统监测的是电池包内部的气体泄漏,包括氢气、一氧化碳、二氧化碳以及内部气压等。这些气体参数的变化往往是电池热失控的早期信号。例如,当电池内部发生异常反应时,可能会产生氢气和一氧化碳等可燃气体,而二氧化碳的含量变化也能反映出电池的化学反应情况。同时,气压的变化也可以提示电池内部是否存在异常压力积累。        三、电池包热失控监测系统的技术原理        该系统主要依靠先进的传感器技术来实现对电池包内部气体参数的精准监测。在电池包内布置高灵敏度的电池热失控监测传感器,这些传感器能够实时感知氢气、一氧化碳、二氧化碳等气体的浓度变化以及气压的波动。传感器将采集到的数据以电信号的形式传输给电池管理系统。        电池管理系统运用复杂的数据处理算法,对这些数据进行分析和判断。通过与预设的安全阈值进行对比,一旦发现气体参数超出正常范围,系统就会立即启动预警机制。例如,如果氢气浓度超过一定值,或者气压上升速度过快,系统会迅速发出警报。        此外,系统还具备智能学习功能。随着时间的推移和数据的积累,系统能够不断优化自身的算法,提高监测的准确性和可靠性,更好地适应不同的工作环境和电池状态。        四、系统的功能特点        1.精准监测和预警功能        能够准确地监测电池包内部各种气体参数的细微变化,一旦发现异常,立即通过声光报警、仪表盘显示等方式向驾驶员发出警报,为及时采取应对措施争取宝贵时间。        2.数据记录和分析功能        记录电池在不同工作状态下的气体参数变化,为后续的故障诊断和性能优化提供详细的数据支持。通过对大量数据的深入分析,研发人员可以不断改进系统的算法和性能,提高监测的准确性和可靠性。        五、应用案例展示        1.物流企业的成功避险        在某物流企业,一批电动商用车安装了电池包热失控监测系统。在一次运输过程中,系统监测到电池包内氢气含量略有上升,气压也出现了轻微变化。驾驶员接到警报后,立即停车检查,并联系了维修人员。经检查,发现是电池内部有轻微的异常反应。由于发现及时,避免了热失控事故的发生,保障了车辆和货物的安全,也为企业挽回了潜在的经济损失。        2.电动公交车的安全保障        一辆电动公交车在行驶过程中,电池包热失控监测系统检测到一氧化碳含量超出安全范围。驾驶员迅速将车辆停靠在安全地带,并疏散了乘客。维修人员赶到现场后,确定是电池出现了局部过热现象,及时进行了处理,避免了严重后果的发生。        六、总结与展望        对于商用车来说,电池包热失控监测系统的重要性不言而喻。它以独特的气体参数监测方式,为车辆的安全运行提供了坚实的保障。在长途运输中,驾驶员可以更加安心地行驶,不必时刻担忧电池安全问题。同时,对于企业来说,减少了因电池故障导致的车辆停运和维修成本,提高了运营效率。        在科技不断进步的今天,电池包热失控监测系统将继续发挥着重要的作用。随着技术的不断升级,它将更加精准地监测电池包内部的各种参数,为商用车的安全运行保驾护航。让我们共同期待,在这个先进技术的守护下,商用车能够在安全的道路上飞驰,为我们的生活带来更多的便利和繁荣。
2024.11.15
储能电池热失控监测系统的主要应用场景有哪些?

储能电池热失控监测系统的主要应用场景有哪些?

                储能电池热失控监测系统主要有以下应用场景:        一、电力储能系统        1.电网侧储能        ●在电网侧,储能系统可以用于调峰调频、缓解电网阻塞、提高电网稳定性等。而热失控监测系统能够实时监测储能电池的状态,确保在电网频繁的充放电过程中,电池不会发生热失控现象,保障电网的安全稳定运行。例如,当电网负荷高峰时,储能系统放电以满足电力需求;负荷低谷时,储能系统充电储存更多的电力。在这个过程中,热失控监测系统可以及时发现电池的异常温度升高、气体泄漏等情况,并发出警报,以便运维人员采取相应措施。        ●参与电力辅助服务市场,如黑启动、无功补偿等。热失控监测系统可以为这些重要的电力服务提供安全保障,确保储能系统在关键时刻能够可靠运行。        2.用户侧储能        ●对于工业用户和商业用户来说,储能系统可以实现峰谷电价套利、提高供电可靠性等。热失控监测系统在此场景下可以实时监测电池状态,防止因热失控导致的停电事故,减少经济损失。例如,工厂可以在电价低谷时充电,高峰时放电,降低用电成本。热失控监测系统能够确保这个过程中电池的安全,避免因电池故障影响生产。        ●分布式能源系统中,如太阳能光伏发电 + 储能系统,热失控监测系统可以保障储能电池与光伏系统的协同工作,提高能源利用效率和系统的稳定性。        二、通信基站储能        通信基站需要不间断的电力供应以保证通信网络的正常运行。储能电池作为备用电源,在市电中断时发挥重要作用。热失控监测系统可以实时监测基站储能电池的状态,防止因热失控引发火灾等事故,确保通信网络的可靠性。特别是在偏远地区和应急通信场景下,热失控监测系统的重要性更加凸显。例如,在自然灾害导致市电中断时,通信基站的储能系统必须可靠运行,热失控监测系统可以及时发现电池问题,为抢修争取时间。        三、数据中心储能        数据中心对电力供应的稳定性要求极高,任何停电事故都可能导致数据丢失和业务中断,造成巨大的经济损失。储能系统可以作为数据中心的备用电源,保障电力的持续供应。热失控监测系统能够实时监测储能电池的状态,防止热失控对数据中心的安全造成威胁。例如,在市电中断时,储能系统迅速启动为数据中心供电,热失控监测系统可以确保电池在这个过程中的安全,避免因电池故障引发火灾或其他安全事故。        四、新能源汽车充电站储能        随着新能源汽车的普及,充电站的建设需求不断增加。储能系统可以用于平衡电网负荷、提高充电效率等。热失控监测系统可以实时监测充电站储能电池的状态,防止因热失控引发火灾,保障充电站的安全运行。例如,在充电高峰时段,储能系统可以释放电能,缓解电网压力;低谷时段充电,降低运营成本。热失控监测系统可以确保这个过程中电池的安全,为新能源汽车的发展提供可靠的基础设施支持。        五、应急电源系统        在医院、学校、政府机构等重要场所,应急电源系统是保障生命安全和基本运行的关键。储能电池作为应急电源的重要组成部分,热失控监测系统可以确保在紧急情况下电池能够可靠工作,为应急设备提供稳定的电力供应。例如,在医院的手术过程中或学校的紧急疏散时,应急电源系统必须能够迅速启动,热失控监测系统可以提前发现电池问题,确保应急电源的可靠性。
2024.08.30
电池热失控监测系统在储能领域的市场规模有多大?

电池热失控监测系统在储能领域的市场规模有多大?

        电池热失控监测系统在储能领域的市场规模会受到多种因素的影响,呈现出不断增长的趋势,以下是具体分析:        1.储能市场整体增长带动        ●随着全球对可再生能源的重视和能源转型的推进,储能市场发展迅猛。国际能源署(IEA)发布的《世界能源展望》报告显示,2019 年全球储能市场规模达到 97 亿美元,预计到 2040 年将增长到 577 亿美元,年均复合增长率为 8.8%。        ●新型储能作为实现 “双碳” 目标的重要抓手,被认为是继光伏、电动车之后的下一个万亿赛道。有关数据显示,预计到 2025 年,以电化学储能为代表的新型储能产业规模有望突破万亿,到 2030 年预计接近 3 万亿。而电池热失控监测系统作为保障储能安全的关键设备,其市场规模也会随之水涨船高。        2.政策推动需求提升        各国政府为了促进清洁能源的发展和减少碳排放,纷纷推出各种政策和补贴措施,鼓励企业使用储能系统。例如,中国多省市出台新能源配储政策,对储能电池的安全性提出明确要求,这促使储能项目投资方更加重视电池热失控监测系统的建设,从而推动了市场需求的增加 。        3.安全意识提高刺激市场        近十年来,全球共发生了超过 30 起电化学储能电站安全事故,绝大部分发生于近 5 年,电化学储能安全形势不容乐观。通过对储能事故分析发现,锂离子电池热失控是造成事故的主要因素之一。因此,为了确保储能系统的安全运行,对电池热失控监测系统的需求日益迫切。这种安全意识的提高,将直接带动电池热失控监测系统市场规模的有效增长。        4.技术进步拓展应用场景        随着传感器技术、数据分析技术等的不断进步,电池热失控监测系统的性能不断提升,监测精度更高、响应速度更快、误报率更低,能够更好地满足不同类型储能项目的需求。例如,从只能监测单一气体指标到可以同时监测氢气、二氧化碳、一氧化碳、烟雾、气压等多种指标,大大提高了系统的可靠性和有效性。同时,技术进步也使得电池热失控监测系统在成本上逐渐降低,有利于其在更多的中小型储能项目中得到应用,进一步扩大了市场规模。        综上所述,在储能市场快速发展、政策支持、安全需求提升以及技术进步等多因素的共同作用下,电池热失控监测系统在储能领域的市场规模将不断扩大,未来具有广阔的发展空间。但具体的市场规模数据会因统计机构、统计时间和范围的不同而有所差异,建议关注相关行业研究报告和市场动态以获取更准确的信息。
2024.08.30
在线客服

业务咨询

技术咨询

售后服务

PC端自动化二维码
135-1581-0281 (即时通话) 459879587 (在线询价) 135-1581-0281 (长按复制)
扫码加微信