新闻资讯

Technical articles

×

感谢您的支持,我会继续努力的!

扫码支持
扫码打赏,你说多少就多少

打开支付宝扫一扫,即可进行扫码打赏哦

首页 > 新闻资讯 > NEWS

Battery pack thermal runaway monitoring system for commercial vehicle safety

来源:DrKsir 时间:2024-11-22 15:01:56

        First. Challenges to the safety of commercial vehicles

        On the vast stage of modern transportation, commercial vehicles undoubtedly play a pivotal role, shuttling between cities, carrying goods and hope. However, with the increasing popularity of electric commercial vehicles, battery safety issues have also become the focus of attention. The thermal runaway of the battery pack is like a time bomb hidden in the vehicle, once it occurs, the consequences are unimaginable. Battery thermal runaway may be caused by a variety of reasons, such as internal short circuit, overcharge and overdischarge of the battery, and external high temperature. When thermal runaway occurs, the battery temperature will rise rapidly, which is likely to cause fire or even explosion, posing a serious threat to the life and property safety of vehicles, goods and passengers.

        Second, the battery pack thermal runaway monitoring system unique monitoring objects

        The battery pack thermal runaway monitoring system monitors gas leaks inside the battery pack, including hydrogen, carbon monoxide, carbon dioxide, and internal air pressure. Changes in these gas parameters are often an early signal of the battery's thermal runaway. For example, when an abnormal reaction occurs inside the battery, flammable gases such as hydrogen and carbon monoxide may be produced, and changes in the content of carbon dioxide can also reflect the chemical reaction of the battery. At the same time, changes in air pressure can also indicate whether there is abnormal pressure accumulation inside the battery.

        Third, the technical principle of the battery pack thermal runaway monitoring system

        The system mainly relies on advanced sensor technology to achieve accurate monitoring of gas parameters inside the battery pack. Highly sensitive cell thermal runaway monitoring sensors are installed in the battery pack. These sensors can sense changes in the concentration of hydrogen, carbon monoxide, carbon dioxide and other gases in real time, as well as fluctuations in air pressure. The sensor transmits the collected data to the battery management system in the form of electrical signals.

        The battery management system uses complex data processing algorithms to analyze and judge these data. By comparing with the preset safety threshold, once the gas parameters are found to be out of the normal range, the system will immediately activate the early warning mechanism. For example, if the concentration of hydrogen exceeds a certain value, or if the pressure rises too fast, the system will quickly sound an alarm.

        In addition, the system also has intelligent learning function. With the passing of time and the accumulation of data, the system can continuously optimize its own algorithm, improve the accuracy and reliability of monitoring, and better adapt to different working environments and battery states.

        Fourth, the functional characteristics of the system

        1. Accurate monitoring and early warning function

        It can accurately monitor the subtle changes in various gas parameters inside the battery pack, and once an anomaly is found, it immediately alerts the driver through sound and light alarm, dashboard display, etc., to gain valuable time for timely response measures.

        2. Data recording and analysis function

        The gas parameter changes of the battery under different working conditions are recorded to provide detailed data support for subsequent fault diagnosis and performance optimization. Through in-depth analysis of large amounts of data, developers can continuously improve the algorithm and performance of the system, improving the accuracy and reliability of monitoring.

        Fifth. Application case display

        1. Successful hedging of logistics enterprises

        In a logistics company, a batch of electric commercial vehicles were installed with a battery pack thermal runaway monitoring system. During one transport, the system detected a slight increase in the hydrogen content in the battery pack and a slight change in air pressure. After receiving the alarm, the driver immediately stopped the car for inspection and contacted maintenance personnel. Upon inspection, it was found that there was a slight abnormal reaction inside the battery. Due to the timely discovery, the occurrence of thermal runaway accidents is avoided, the safety of vehicles and goods is guaranteed, and potential economic losses are also saved for enterprises.

        2. Safety guarantee of electric buses

        The battery pack thermal runaway monitoring system detected carbon monoxide levels beyond safe limits while an electric bus was moving. The driver quickly pulled over to safety and evacuated the passengers. After the maintenance personnel arrived at the scene, it was determined that there was local overheating of the battery, and they were dealt with in time to avoid serious consequences.

        Sixth. Summary and prospect

        For commercial vehicles, the importance of the battery pack thermal runaway monitoring system is self-evident. With its unique gas parameter monitoring method, it provides a solid guarantee for the safe operation of the vehicle. In long-distance transportation, the driver can drive with more peace of mind and do not have to worry about battery safety. At the same time, for enterprises, vehicle outage and maintenance costs caused by battery failure are reduced, and operational efficiency is improved.

        With the continuous progress of science and technology today, the battery pack thermal runaway monitoring system will continue to play an important role. With the continuous upgrading of the technology, it will more accurately monitor the various parameters inside the battery pack, and escort the safe operation of commercial vehicles. Let us hope that under the protection of this advanced technology, commercial vehicles can fly on safe roads and bring more convenience and prosperity to our lives.


关注公众号

了解更多传感器知识

公众号:德克西尔

传感器产品二维码

加微信

购买传感器产品

微信号:Drksir-13515810281

相关内容推荐
​国产氢气传感器在氢能源行业中的优势有哪些?

​国产氢气传感器在氢能源行业中的优势有哪些?

        国产氢气传感器近年来在技术研发和市场化应用方面取得了显著进展,逐渐成为保障国内氢能产业安全、推动行业健康发展的重要组成部分。        国产氢气传感器在氢能源行业中的优势主要体现在以下几个方面:        1. 技术创新与自主知识产权        国产氢气传感器研发团队不断突破技术壁垒,成功开发出具有自主知识产权的产品。这意味着中国企业在氢气检测技术上不再受制于人,能够独立设计、生产和优化传感器性能,以适应国内氢能源产业的具体需求。        2. 成本控制与价格优势        国内生产的氢气传感器可以有效降低生产成本,相较于进口产品,国产传感器的价格更为亲民,有利于氢能源产业链上的各类企业采用并推广,从而降低整体设备成本和运营成本。        3. 定制化服务与快速响应能力        国内制造商更贴近市场需求,可以根据客户的具体要求进行定制化开发和服务,提供灵活且快速的技术支持和解决方案,尤其在应对复杂环境下的应用问题时反应迅速。        4. 政策支持与市场准入        随着国家对新能源产业的大力扶持,国产氢气传感器更容易获得政府政策支持,例如通过认证标准、项目招标等环节的优先考虑,以及在特定应用场景下对于国产产品的强制或推荐使用政策。        5. 技术性能与可靠性        如中科微感研发的高性能氢气传感模组,不仅具备高灵敏度、低功耗、宽测量范围、长寿命及快速响应等优秀特性,还集成了温湿度校准和专用算法,提升了检测精度和稳定性,充分体现了国产传感器在技术性能方面的竞争力。        6. 产业链协同效应        国产氢气传感器的研发和应用促进了国内氢能产业链上下游的协同创新与发展,如苏州纳格光电结合纳米材料批量印刷技术和MEMS工艺研制出的车载氢气传感器,已通过车规级测试,为我国氢燃料电池汽车等终端应用提供了可靠的安全保障。        7. 产学研用结合        通过与高校、科研院所及产业界紧密合作,国产氢气传感器的研发得到了快速推进,产学研用一体化发展模式有助于科技成果迅速转化成生产力,进一步推动整个氢能源行业的创新发展。        综上所述,国产氢气传感器凭借自主可控的技术、成本优势、快速响应的服务体系以及政策利好等因素,在氢能源行业中展现出强大的竞争优势,有力地推动了我国氢能源产业的安全高效发展。
2024.12.24
热失控对锂离子电池的安全性有哪些影响?

热失控对锂离子电池的安全性有哪些影响?

        热失控对锂离子电池安全性影响广泛且严重,涵盖燃烧爆炸、电解液泄漏、性能衰退以及对电池系统的不良影响等多方面危害。        1.燃烧和爆炸风险        燃烧过程:热失控过程中,电池内部的化学反应会产生大量的热,使电池温度急剧升高。当温度达到电解液的燃点时,电解液可能会燃烧。例如,常用的碳酸酯类电解液在高温和有氧气存在的情况下容易起火燃烧。燃烧会释放出有毒有害气体,如一氧化碳、二氧化碳等,对周围环境和人员造成危害。        爆炸现象:热失控还可能导致电池爆炸。在电池内部,由于化学反应产生的气体不断积聚,使得电池内部压力迅速增加。如果电池的安全阀等安全装置失效,或者压力增加的速度超过安全阀的泄压速度,电池外壳就可能破裂,甚至引发爆炸。这种爆炸可能会造成严重的物理伤害,并且会使电池内部的活性物质和电解液等喷溅出来,进一步扩大危害范围。        2.电解液泄漏风险        泄漏途径:热失控过程中,电池内部压力升高,可能会导致电池外壳破裂或者密封结构失效,从而使电解液泄漏。此外,电池内部的一些化学反应也可能会腐蚀电池的外壳或者密封材料,加速电解液的泄漏。例如,当电池内部产生的酸性或碱性物质与密封材料发生反应时,会破坏密封性能。        泄漏危害:电解液通常含有锂盐和有机溶剂等成分,其中一些有机溶剂是有毒有害的。一旦泄漏,这些电解液可能会接触到人体皮肤、眼睛等部位,引起化学灼伤或者中毒。同时,电解液泄漏到周围环境中,还可能会污染土壤、水源等,对生态环境造成破坏。        3.电池性能衰退风险        容量衰减:热失控会对电池的容量产生不可逆的影响。一方面,电池内部的高温可能会导致电极材料的结构发生变化。例如,正极材料在高温下可能会发生晶格畸变,使锂离子的嵌入和脱出变得困难,从而导致电池容量下降。另一方面,热失控过程中的化学反应可能会消耗电池内部的活性物质,减少能够参与充放电过程的锂离子数量,也会导致电池容量的损失。        功率性能下降:热失控还会影响电池的功率性能。电池内部的高温可能会使电极材料与集流体之间的接触电阻增大,降低电池的导电性能。同时,电池内部产生的气体可能会阻碍离子在电解液中的传输,导致电池的内阻增加,从而使电池在高功率输出时的性能下降,如无法满足电动汽车的加速需求等。        4.对电池系统的影响风险        热失控传播:在电池组或者电池系统中,一个电池发生热失控可能会引发相邻电池也发生热失控,这种现象称为热失控传播。这是因为热失控产生的热量会传递给相邻的电池,使相邻电池的温度升高,达到其热失控的触发温度。热失控传播可能会导致整个电池系统的崩溃,造成严重的安全事故。        系统故障和失效:热失控会导致电池系统中的电池出现故障,如短路、断路等。这些故障可能会影响电池系统的正常运行,例如,在电动汽车中,电池系统故障可能会导致车辆失去动力,在储能系统中,可能会导致电力供应中断等。
2024.12.24
锂电池热失控的气体成份有哪些?

锂电池热失控的气体成份有哪些?

        锂电池热失控产生的气体成分较为复杂,主要包括以下几种:        1.二氧化碳(CO₂)        这是一种常见的气体产物。在电池热失控过程中,当电池内部的有机电解液等成分发生分解和燃烧反应时会产生二氧化碳。例如,碳酸酯类电解液在高温下分解,其中的碳元素会与氧气结合形成二氧化碳。        它是一种无色无味的气体,在大气中的含量增加会对环境产生温室效应。在电池热失控产生大量二氧化碳的情况下,如果处于密闭空间,会使空间内氧气含量相对降低,可能导致人员窒息。        2.一氧化碳(CO)        一氧化碳主要是由于电池内部材料在不完全燃烧或复杂的热化学反应过程中产生。当电池热失控导致内部的碳基材料(如石墨负极等)不能完全氧化时,就会产生一氧化碳。        一氧化碳属于一种剧毒气体,它能与人体血液中的血红蛋白结合,其结合能力比氧气与血红蛋白的结合能力强很多。一旦人体吸入一氧化碳,会使血红蛋白失去携氧能力,从而导致人体组织器官缺氧,严重时可致人死亡。        3.氢气(H₂)        电池热失控时,一些金属氢化物(如果有)的分解或者水电解质(如果存在)的分解反应可能会产生氢气。例如,在含有少量水分的电池体系中,高温下水分会发生分解反应。        氢气是一种易燃易爆的气体。在空气中,氢气的体积分数达到 4.0% - 75.6% 时,遇到火源就会发生爆炸,所以电池热失控产生的氢气会带来很大的安全隐患。        4.甲烷(CH₄)        甲烷的产生可能是由于电池内部有机成分(如某些有机粘结剂或电解液中的添加剂)在高温和复杂的化学反应环境下分解产生。        它是一种可燃性气体,在空气中燃烧会产生二氧化碳和水。当电池热失控产生甲烷时,若遇到火源等情况,会引发燃烧,加剧事故的危害。        5.乙烯(C₂H₄)        乙烯也是有机电解液等成分在高温分解过程中产生的气体。在电池热失控过程中,电解液中的一些复杂有机化合物会发生裂解反应,生成乙烯等小分子烃类化合物。        乙烯是一种重要的化工原料,但它在电池热失控的场景下是易燃气体,容易引发火灾。其在空气中的爆炸极限为 2.7% - 36%。        6.丙烯(C₃H₆)        与乙烯类似,丙烯也是从电池内部有机材料分解而来。电解液中的长链有机化合物在高温和复杂化学反应下,可能断裂生成丙烯。        它同样是一种易燃气体,燃烧时会产生二氧化碳和水,在适当的浓度和火源条件下会发生爆炸,从而扩大电池热失控事故的危害范围。
2024.12.20
​极早期电气火灾监测装置的使用寿命有多长?

​极早期电气火灾监测装置的使用寿命有多长?

        在电力系统中,预防胜于治疗。一旦发生电气火灾,后果不堪设想。极早期电气火灾监测装置就像是配电柜的“健康卫士”,它们默默地守护着每一个电路节点,确保电力供应的安全可靠。然而,您是否曾想过这些默默工作的英雄们究竟能坚守岗位多久?今天,我们将揭开这一神秘面纱,探讨极早期电气火灾监测装置的使用寿命究竟有多长。        1. 设计寿命与实际使用        极早期电气火灾监测装置的设计寿命通常是由制造商根据行业标准和产品测试来确定的。一般而言,高质量的产品设计寿命可达10至20年不等。但是,实际使用寿命会受到多种因素的影响,如环境条件、维护保养情况以及操作频率等。        2. 环境影响        安装环境对于监测装置的寿命有着直接的影响。如果设备长期处于高湿度、高温或存在腐蚀性气体的环境中,其内部电子元件可能会加速老化,从而缩短整体寿命。因此,在选择安装位置时,应尽量避免上述不利条件,并考虑采取适当的防护措施。        3. 维护保养的重要性        定期的检查和维护是延长监测装置使用寿命的关键。通过及时清理灰尘、检查接线端子的紧固程度以及更换老化的零部件,可以有效地防止故障的发生,保持设备的最佳工作状态。此外,按照厂家提供的说明书进行规范操作也是必不可少的。        4. 技术更新换代        随着科技的进步,新的技术和材料不断涌现,使得新一代监测装置具备更高的性能和更长的寿命。当您的现有设备接近其预期寿命时,不妨关注市场上是否有更加先进的替代品。这不仅可以提高系统的安全性,还能带来额外的功能优势,例如智能化管理和远程监控等功能。        5. 制造商的支持和服务        选择一家有信誉的制造商同样重要。优质的售后服务团队可以在设备出现问题时提供快速响应和技术支持,帮助用户解决问题并优化系统配置。同时,一些厂商还会推出延保服务,为客户提供额外的安全保障。        结语        综上所述,极早期电气火灾监测装置的实际使用寿命取决于多方面因素的综合作用。为了确保这些关键设备能够长期稳定运行,建议用户重视日常维护保养,并选择可信赖的制造商作为合作伙伴。若您正为电气安全布局,欢迎随时联系我们,携手共创安全用电环境。
2024.12.21
热解粒子是什么?

热解粒子是什么?

        一、什么是热解粒子?        热解粒子是物质在受热分解过程中产生的微小颗粒。当电气设备、电线电缆、开关接头等有机材料受热,且温度达到一定程度,其内部化学键开始断裂,分子结构被破坏,进而分解形成各种气态、液态和固态产物,其中固态的微小颗粒部分就是热解粒子。这些粒子通常具有特定的粒径分布范围,一般在纳米至微米级别,并且其化学组成与原始材料密切相关,携带了材料热解过程的关键信息。        二、热解粒子有哪些特性?        1.粒径微小:如前文所述,热解粒子大小多处于纳米到微米尺度,这使得它们能够在空气中悬浮较长时间,易于扩散,增加了被探测到的难度,同时也意味着一旦产生,能迅速在周围空间传播,为早期火灾预警提供了可能。        2.化学成分复杂:取决于热解的原始材料,热解粒子包含多种有机和无机成分。例如,来自电线绝缘外皮的热解粒子可能含有聚氯乙烯分解产生的氯化氢、碳黑等;从电路板热解而来的粒子会有树脂、金属氧化物等成分,这些复杂成分反映了热解发生的源头。        3.产生与温度关联:热解现象严格受温度制约,不同材料有其对应的热解起始温度。一般来说,常见的电气绝缘材料在 150℃ - 300℃左右开始热解,随着温度升高,热解速度加快,热解粒子的产生量也随之增多,呈现明显的正相关关系。        三、热解粒子在电气火灾中的作用是什么?        在电气火灾发生前,往往存在电气设备过热、短路等故障,促使绝缘材料等受热分解产生热解粒子。热解粒子作为早期火灾的 “信使”,其浓度变化能够反映电气系统的健康状况。当热解粒子浓度在局部区域逐渐升高,意味着有潜在的火灾风险正在累积,此时若能及时探测到,就如同捕捉到火灾的 “蛛丝马迹”,可以提前启动预警,争取宝贵的时间采取措施,如切断故障电路、排查过热设备等,有效遏制火灾的发生和蔓延,极大地提高电气系统的安全性。        四、如何探测热解粒子?        目前主要依靠热解粒子探测器。这种探测器通常内置高精度的采样装置,能够主动或被动地收集周围空气中的粒子样本。其核心传感部件利用物理或化学原理对热解粒子进行甄别,例如,有的基于光电效应,当热解粒子通过检测区域,改变光路或光强,触发光电传感器响应;还有的运用化学吸附与电导率变化原理,热解粒子吸附在特定材料上引起电导率改变,进而被检测到。探测器内的微处理器结合复杂算法,对采集到的数据进行实时分析,排除环境干扰,准确判断热解粒子的浓度及变化趋势,一旦达到报警阈值,即刻发出警报。
2024.12.21
极早期电气火灾监测装置与与传统的火灾报警系统有什么区别?

极早期电气火灾监测装置与与传统的火灾报警系统有什么区别?

        极早期电气火灾监测装置与传统火灾报警系统的区别:        一、监测原理        1.传统火灾报警系统:靠感烟、感温探测器,像离子感烟探测器依据烟雾影响电离室离子电流,感温探测器依温度升高来监测,环境烟雾、温度达阈值就报警。        2.极早期电气火灾监测装置:重点监测电气线路的剩余电流、温度、绝缘状况等电气参数,线路漏电致剩余电流超设定值、温度异常升高时报警。        二、报警时间        1.传统火灾报警系统:火灾发生且产生足量烟雾或温度明显升高后才报警,较滞后,初期少量烟雾时可能察觉不到。        2.极早期电气火灾监测装置:电气隐患刚出现、未形成明火或大量烟雾前就能预警,像轻微漏电、局部小幅度升温时即可察觉。        三、监测范围        1.传统火灾报警系统:针对如房间等较大防护区域整体环境监测烟雾、温度,报警后难精确定位故障点。        2.极早期电气火灾监测装置:聚焦配电柜、电气线路等电气系统特定部位,能精准指向具体线路、插座等故障位置。        四、系统构成        1.传统火灾报警系统:由火灾探测器、手动报警按钮、报警控制器、声光报警器组成,探测器采集信号传至控制器处理判断后报警。        2.极早期电气火灾监测装置:有监测主机及剩余电流互感器、温度传感器等探测器,装在电气线路上采集参数传主机分析处理。        五、误报率        1.传统火灾报警系统:因靠环境烟雾、温度监测,易受灰尘、水汽、烹饪烟雾干扰,误报率高些。        2.极早期电气火灾监测装置:主要监测电气参数,受环境干扰小,误报率低,但电气系统电磁干扰、设备老化时也可能误报。        六维护成本        1.传统火灾报警系统:定期清洁、测试探测器、换电池,维护较简单,成本低,故障排查修复较耗时费力。        2.极早期电气火灾监测装置:对设备精度要求高,需校准、检测探测器与主机,及时换老化损坏部件,维护成本高。
2024.12.20
锂离子电池热失控机理的研究现状和发展趋势是怎样的?

锂离子电池热失控机理的研究现状和发展趋势是怎样的?

        一、锂离子电池热失控机理的研究现状:        1.引发因素的深入研究:        内部短路:机械外力作用(如碰撞、挤压、针刺)导致电池内部结构变形,使隔膜被刺破或损坏,正负极直接接触引发短路,这是热失控的常见因素之一。制造过程中的工艺问题或质量控制不严格,导致电极材料不均匀分布、隔膜缺陷等,也可能在电池使用过程中逐渐发展成内部短路。        电解质分解:高温条件下,锂离子电池中的有机溶剂会发生分解,产生气体和热量。常用的碳酸酯类有机溶剂在高温下会分解成一氧化碳、二氧化碳等气体,并且电解质分解产生的气体和热量会进一步与电池内部的其他物质发生反应,进一步加剧热失控。        正极材料分解:高温环境下,正极材料的结构会发生变化,化学性质变得不稳定。例如钴酸锂等正极材料在高温下会分解产生氧气,氧气的释放会增加电池内部的氧气浓度,为燃烧等剧烈反应提供条件,并且正极材料分解产生的氧气会与电解质发生反应,进一步释放热量。        负极材料反应:负极表面的固态电解质界面膜(SEI 膜)在电池温度升高或受到其他因素影响时会发生分解,导致负极与电解质之间的直接接触,引发一系列反应,产生热量。此外,充电速度过快或电流过大时,负极表面可能会形成锂枝晶,锂枝晶会刺穿隔膜,导致正负极之间的短路,从而引发热失控。        电池过充:过度充电时,正极材料中的锂离子过度脱出,导致正极材料的结构发生变化,同时电池内部的电压升高,引发一系列副反应。电解液组分在正极表面发生不可逆的氧化分解反应,产生气体并释放大量热量,导致电池内压增加和温度升高。        2.复杂反应过程的探索:        多阶段反应特征:热失控是一个多阶段的过程,目前研究将其大致分为几个阶段,不同阶段有不同的主要反应和热量释放特点。例如,最初可能是 SEI 膜的分解,随后是隔膜坍塌、内部短路,接着是正极与电解液的剧烈反应等。        相互耦合的反应:电池内部各组件之间的反应相互影响、相互耦合。例如,负极产生的气体可能会穿梭到正极侧,加速正极的放热反应;正极材料分解产生的氧气又会进一步促进电解质的分解等。        3.原位检测技术的发展:为了更准确地理解热失控机理,原位检测技术得到了快速发展。如中国科学技术大学孙金华教授和王青松研究员团队与暨南大学郭团教授团队研制出可植入电池内部的高精度、多模态集成光纤传感器,能够实现对电池热失控全过程内部温度和压力的同步精准测量,为研究热失控的演变过程提供了有力的技术手段3。        4.对电池体系热兼容性的关注:研究人员认识到电池材料(电极材料、电解质、添加剂等)之间的热兼容性对电池安全性至关重要。单纯提高某一组分的热稳定性无法确保电池整体的安全性能提升,需要综合考虑各组分之间的相互作用。        二、锂离子电池热失控机理的发展趋势:        1.多尺度研究:        微观尺度:借助先进的表征技术,如高分辨率电子显微镜、同步辐射 X 射线技术等,深入研究电池材料在微观层面的结构变化和反应机理。例如,探究电极材料在热失控过程中的晶体结构演变、元素价态变化等,以更好地理解热失控的起始机制和微观反应过程。        宏观尺度:在宏观层面,关注电池模组和电池系统的热失控传播机制。研究热失控在电池组内的传播规律、热传递方式以及如何通过结构设计和热管理策略来抑制热失控的传播,对于提高大型电池系统的安全性具有重要意义。        2.跨学科研究:        与材料科学结合:开发新型的电池材料,如具有更高热稳定性的电极材料、不易燃的电解质、耐高温的隔膜等。通过材料的创新来提高电池的安全性,从根本上降低热失控的风险。例如,研究固态电解质替代传统的液态电解质,以解决液态电解质易燃的问题,同时提高电池的安全性和能量密度。        与热物理学结合:深入研究电池内部的热传导、热扩散等热物理过程,建立更准确的热模型。这有助于更好地理解热量在电池内部的传递和积累过程,为电池的热管理设计提供理论依据。        与人工智能和大数据结合:利用人工智能算法对大量的实验数据进行分析和挖掘,预测电池的热失控行为。通过建立电池的数字孪生模型,模拟不同工况下电池的热行为,为电池的设计、制造和使用提供指导。        3.实际应用场景的针对性研究:        电动汽车应用:随着电动汽车的快速发展,对锂离子电池在复杂使用环境下(如高温、低温、快速充放电等)的热失控机理研究将成为重点。研究如何提高电动汽车电池系统的安全性,开发有效的热失控预警和防控技术,以满足电动汽车的安全标准和市场需求6。        储能领域应用:在大规模储能领域,锂离子电池的安全性要求更高。研究人员将关注电池组在长期储能过程中的热稳定性,以及如何应对可能出现的热失控风险。同时,开发适用于储能系统的热管理技术和安全监控系统,保障储能系统的安全运行。        4.标准化研究:随着锂离子电池的广泛应用,制定统一的热失控测试标准和评估方法将成为未来的发展趋势。这有助于准确评估不同电池产品的安全性,为行业的健康发展提供保障。
2024.12.23
中国在氢储能领域的成功应用案例有哪些?

中国在氢储能领域的成功应用案例有哪些?

        中国在氢储能领域有以下一些成功应用案例:        1.广州小虎岛电氢智慧能源站:        这是国家重点研发计划项目的示范工程、国内首个应用固态储供氢技术的电网侧储能型加氢站。该站实现了从电解水制氢,到固态氢储存,再到加氢、燃料电池发电和余电并网的完整流程。其采用的固态储氢技术,通过氢气与新型合金材料发生化学反应来存储氢气,解决了常温条件下固态形式存储氢气的技术瓶颈。固态储氢装置具有体积储氢密度高、充放氢压力低、安全性好等优势,且核心技术和装置全部国产化,固态储氢装置核心单元的体积储氢密度指标达到国内领先水平。        2.浙江衢州分布式氢电耦合实验方舱:        于 2023 年 7 月 13 日在衢州顺利投运,是浙江首个分布式氢电耦合实验方舱。该项目以新型电力系统领域氢储能技术为切入点,开展源网荷储分布式协调优化研究,探索实现多种能源集中控制、管理以及调配,为氢储能技术在电力系统中的应用打下坚实基础。目前处于实验阶段,方舱配置光伏板和新能源汽车充电桩,固体储氢罐可储存一定量氢气,可同时供多辆新能源车充电,未来有望在分布式保供电、电网削峰填谷、用户侧储能等场景广泛应用。        3.中船风电风光氢储试验场:        该项目位于敦煌北戈壁滩的中船风电风光氢储试验场,场内可再生能源发电、离网制氢及氢能消纳三大核心技术环节全面贯通,燃料电池系统成功发电。该项目采用交直流混合微电网组网技术和锂电 — 燃电混合储能模式,搭载自主开发的风光氢储微电网能量管理系统,将氢燃料电池和锂电池共同作为调峰载体和后备电源,对源网荷储氢多能系统进行多尺度协调控制,实现了 100% 可再生能源供电,为应对可再生能源固有波动性对电力系统调峰、消纳及稳定运行带来的挑战提供了科学路径。        4.安徽六安 1 兆瓦分布式氢能综合利用站电网调峰示范项目:        该项目是国内第一个兆瓦级氢能源储能电站,由国网安徽综合能源服务有限公司投资建设,总投资 5000 万元。该项目体现了氢储能在电网调峰方面的应用潜力,对探索氢储能在电力系统中的大规模应用具有重要意义。        5.东方电气都江堰工业园区氢储能供电站:        该项目是国内首个绿电制氢储氢发电商业应用项目,将在都江堰建设 10 兆瓦等级的工业园区氢储能供电站。项目一期建设绿电电解水制氢系统、气态储氢系统和氢燃料电池发电系统,通过绿电制氢、氢储能和氢发电保障工业园区峰电时段供电,打造工业园区绿色低碳电力供应新模式,为新型能源体系建设提供了全新的解决方案。        6.我国首列氢能源市域列车:        2024 年 3 月 21 日,由中车长客股份公司自主研制的我国首列氢能源市域列车在长春成功达速试跑。列车应用了多储能、多氢能系统分布式的混合动力供能方案,采用了自主开发的氢电混动能量管理策略和控制系统,实现了整车控制的深度集成,大幅提高能量利用效率,同时提高供能的灵活性和可靠性,最高续航里程可达 1000 公里以上。这标志着氢能在轨道交通领域应用取得新突破。        7.宝丰能源绿氢综合示范项目:        宁夏首个氢能产业项目,也是国内最大的一体化可再生能源制氢储能项目。2021 年 2 月,年产 1.6 亿立方的绿氢综合示范项目已部分建成调试进入试生产阶段。该项目全部投产后对于推动可再生能源制氢、实现绿氢替代化石能源具有重要意义。        8.国华投资河北分公司丰宁风光氢储 100 万千瓦风光项目:        这是国家第一批以沙漠、戈壁、荒漠地区为重点的大型风电光伏基地建设项目中唯一一个集风、光、氢、储、产五大元素的综合性一体化示范项目。项目位于承德市丰宁满族自治县坝上丘陵地带,总投资约 58 亿元,规划装机总容量 100 万千瓦,配套储能容量 115 兆瓦 / 230 兆瓦时,3 座油氢站、1 座制氢工厂。项目每年可生产绿电 20.7 亿千瓦时、绿氢 1700 万标方,具有显著的节能减排效果。
2024.12.23
电气火灾报警装置的发展现状?

电气火灾报警装置的发展现状?

        在现代生活中,电力如同空气一般不可或缺。然而,随着电气设备的日益普及和用电量的持续增长,电气火灾的风险也与日俱增。据统计,全球范围内因电气故障引发的火灾占据了所有火灾事故的一大部分,造成了难以估量的生命财产损失。面对这一严峻挑战,电气火灾报警装置犹如黑暗中的灯塔,为人们的安全保驾护航。它不仅是一个技术产品,更是一道保护生命的屏障。今天,让我们一同探索电气火灾报警装置的发展历程及其最新进展,了解它是如何不断演进以适应现代社会的需求,并成为建筑安全系统中不可或缺的一部分。        一、技术进步与市场趋势        近年来,电气火灾报警装置经历了从简单的烟雾探测到智能化、网络化的巨大变革。早期的产品主要依赖于热敏元件或感烟器来检测火灾,而今的智能报警系统则集成了多种先进技术,如红外线、紫外线探测、图像识别以及极早期的激光粒子传感器等,能够更加精准地识别初期火灾迹象。此外,无线通信技术和物联网(IoT)的应用使得这些设备可以实现远程监控和自动响应,极大地提高了预警效率和应急处理能力。        二、智能化与集成化        随着人工智能(AI)和大数据分析技术的发展,新一代电气火灾报警装置正朝着智能化方向迈进。通过学习算法,这类系统不仅能准确判断火警真假,还能预测潜在风险,提前采取预防措施。同时,它们还能够与其他安防系统无缝对接,形成一个全面覆盖的安全防护网。例如,在发生火灾时,报警装置可以联动门禁控制系统自动开启逃生通道,或者通知消防部门并提供精确的位置信息。        三、法规与认证        各国政府和相关机构越来越重视电气火灾报警装置的质量和可靠性,制定了一系列严格的法规和技术规范。这促使企业不断提高产品质量,确保每一个出厂的产品都经过严格测试,并获得必要的认证标志。比如CE、UL等国际认证不仅是产品进入市场的通行证,更是消费者信任的重要保证。        结语        综上所述,电气火灾报警装置已经从传统的单一功能设备转变为复杂多样的智能安全解决方案。它们不仅在技术上取得了长足的进步,而且在人性化设计、绿色环保等方面也有着卓越表现。未来,随着科技的不断进步和社会需求的变化,我们可以期待更多创新性的产品和服务出现。对于想要提升自身安全水平的企业和个人来说,选择一款合适的电气火灾报警装置至关重要。如果您正在寻找最先进、最可靠的电气火灾防护方案,请不要犹豫,立即联系专业的厂家,我们将竭诚为您提供定制化的服务和支持,共同构建一个更加安全美好的世界。
2024.12.20
在线客服

业务咨询

技术咨询

售后服务

PC端自动化二维码
135-1581-0281 (即时通话) 459879587 (在线询价) 135-1581-0281 (长按复制)
扫码加微信